本文解读了香港科技大学陈雷教授团队、北京邮电大学邵蓥侠副教授、上海交通大学沈艳艳副教授和香港理工大学曹建农教授联合发表在国际数据库与数据管理顶级会议 VLDB 2022 上的论文“面向大规模图神经网络的陈旧性感知通信回避的去中心化全图训练框架(SANCUS: Staleness-Aware Communication-Avoiding Full-Graph Decentralized Training in Large-Scale Graph Neural Networks)”,该论文获得了大会最佳研究论文奖(Best Regular Research Paper)
上图展示了 SANCUS 框架的基本训练流程,主要包括五个步骤:(1)数据加载,(2)陈旧性边界检查,(3)嵌入广播,(4)GNN 模型计算,以及(5)结果缓存。接下来分别介绍这些步骤。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢