开发高能高效电池技术是推进交通和航空电气化的关键方面。然而,电池创新可能需要数年时间才能实现。在非水电池电解质溶液的情况下,选择多种溶剂、盐及其相对比例的许多设计变量使得电解质优化既费时又费力。
为了克服这些问题,卡内基梅隆大学(Carnegie Mellon University)的研究团队提出了一种实验设计,将机器人技术(一个名为「Clio」的定制自动化实验)与机器学习(一个名为「Dragonfly」的基于贝叶斯优化的实验计划器)结合起来。在单盐和三元溶剂设计空间内对电解质电导率进行自主优化,在两个工作日和 42 次实验中确定了六种快速充电的非水电解质溶液。与由同一自动化实验执行的随机搜索相比,该结果代表了 6 倍的时间加速。
为了验证这些电解质的实际用途,研究人员在 220 mAh 石墨∣∣LiNi0.5Mn0.3Co0.2O2 软包电池配置中对其进行了测试。与使用从设计空间中预先选择的非水电解质溶液的基线实验相比,所有包含机器人开发的电解质的软包电池都显示出改进的快速充电能力。
该研究以「Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling」为题,于 2022 年 9 月 27 日发布在《Nature Communications》。
论文链接:https://www.nature.com/articles/s41467-022-32938-1
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢