今日,在Cancer Cell顶刊上发表了一篇题为"Artificial interlligence for multimodal data integration in oncology"的综述文章。

作者介绍了用于多模态数据融合和关联发现的 AI 方法和策略的概要。概述了 AI 可解释性的方法和通过多模式数据互连进行 AI 驱动探索的方向,以及研究了临床应用中的挑战并讨论新兴的解决方案。

肿瘤学中的人工智能方法

人工智能方法可以分为监督、弱监督或无监督。为了突出每个类别的特定概念,作者在计算机视觉框架中展示了应用于数字病理学的所有方法。

监督方法:手动提取的特征方法,表征学习方法。

弱监督方法:图卷积网络,多实例学习,视觉transformers。

无监督方法:自监督方法,无监督特征分析。