论文题目:

Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning

论文地址:https://www.nature.com/articles/s41467-022-33441-3

 

  1. 突破冯·诺伊曼概念限制的模拟Ising机


Ising 机是一种很有前景的非冯·诺伊曼计算概念,其工作原理基于这样一种认识——各种复杂的计算问题可以映射到一个简单的自旋系统,即所谓的 Ising 模型,并通过基于模拟物理系统的人工自旋网络实现。模拟 Ising 机自然倾向于演化到其最低能量构型,通过这个过程就能够找到问题的解,并突破基于冯·诺伊曼计算平台的许多限制,加速神经网络训练和组合优化问题的计算。

然而,尽管各种神经网络可以用模拟 Ising 机实现,但它们不能执行快速统计采样,这使得它们在训练神经网络方面比数字计算机效率低。这是因为训练这些神经网络需要玻尔兹曼采样,这是对热平衡态下神经元激活概率的估计。由于模拟 Ising 机在非常低的温度下自然实现自旋系统,它们不能在任意温度下达到热平衡,因此不能进行玻尔兹曼采样。

为了使用模拟 Ising 机实现高效的统计采样,并利用其固有速度加速机器学习,本文提出了一种使用模拟 Ising 机执行统计采样的通用方法,其中来自模拟噪声源的噪声被注入,驱动 Ising 机进入热平衡态。类似于热力学温度,噪声作为随机元素,阻止自旋系统收敛到稳定状态。研究表明,噪声允许在任意温度下连续生成统计上独立的玻尔兹曼分布采样。

图:(a)模拟 Ising 机通过注入噪声,实现超快速的统计采样;(b)自旋振幅和 Ising 能量的演化;(c)实验设置。

 

  1. 模拟Ising机

用于玻尔兹曼采样和神经网络训练


研究中使用时间多路复用光电 Ising 机,这个系统由一个产生自旋态的光电模拟非线性系统,和一个进行自旋耦合的 FPGA 组成。如图2b所示,将噪声诱导采样与使用马尔可夫链蒙特卡罗(MCMC)采样的基于软件的采样进行比较,发现用 Ising 机得到的分布与基于软件的采样非常一致,从而证明,模拟 Ising 机可用于波尔兹曼分布的精确采样,与基于软件的训练具有相同的准确性。

图2.  模拟 Ising 机得到的分布与基于软件的采样非常一致,可用于波尔兹曼分布的精确采样。


研究通过实验演示了图像识别任务中神经网络的无监督训练,如图3c所示。通过使用 Ising 机进行手写数字识别任务,研究发现,基于 Ising 机的训练精度与基于 MCMC 的采样训练相当。这表明使用模拟 Ising 机的噪声诱导采样可以成功用于训练受限玻尔兹曼机(RBM)。值得注意的是,与数字计算机上基于 MCMC 的采样相比,实验设置略微实现了性能改进,使得基于软件的采样可以被模拟 Ising 机取代。

图3.  对于图像识别任务中神经网络的无监督训练,模拟 Ising 机的噪声诱导采样与基于 MCMC 的采样训练相当。

内容中包含的图片若涉及版权问题,请及时与我们联系删除