图片

论文链接:https://arxiv.org/pdf/2210.12089.pdf

近年来,图神经网络在社区检测、分子分类和链接预测等任务中表现突出。然而,这些模型的黑箱特性阻碍了它们在卫生和金融等领域的应用,在这些领域,理解模型的决策是至关重要的。反事实解释(CE)通过实例提供了这些理解。此外,关于CE的文献也在不断涌现出适合图学习的新颖解释方法。在本综述中,我们分析了现有的图反事实解释方法,根据定义、数据集和度量的统一正式符号,为读者提供了文献组织,从而简化了方法优缺点的潜在比较。我们讨论了7种方法和16个合成和真实的数据集,提供了可能的生成策略的细节。我们强调了最常见的评估策略,并将文献中使用的9个指标形式化。我们首先介绍了评估框架GRETEL,以及如何扩展和使用它,同时提供包含可再现性方面的进一步比较维度。最后,在深入讨论公开挑战和未来工作之前,我们将讨论反事实解释如何与隐私和公平性相互作用。

内容中包含的图片若涉及版权问题,请及时与我们联系删除