作者 | 苏剑林 单位 | 追一科技
作为生成模型,扩散模型跟 VAE、GAN、flow 等模型的发展史很相似,都是先出来了无条件生成,然后有条件生成就紧接而来。无条件生成往往是为了探索效果上限,而有条件生成则更多是应用层面的内容,因为它可以实现根据我们的意愿来控制输出结果。从 DDPM 至今,已经出来了很多条件扩散模型的工作,甚至可以说真正带火了扩散模型的就是条件扩散模型,比如脍炙人口的文生图模型 DALL·E 2 [1]、Imagen [2]。
在这篇文章中,我们对条件扩散模型的理论基础做个简单的学习和总结。
技术分析
从方法上来看,条件控制生成的方式分两种:事后修改(Classifier-Guidance)和事前训练(Classifier-Free)。对于大多数人来说,一个 SOTA 级别的扩散模型训练成本太大了,而分类器(Classifier)的训练还能接受,所以就想着直接复用别人训练好的无条件扩散模型,用一个分类器来调整生成过程以实现控制生成,这就是事后修改的 Classifier-Guidance 方案;而对于“财大气粗”的 Google、OpenAI 等公司来说,它们不缺数据和算力,所以更倾向于往扩散模型的训练过程中就加入条件信号,达到更好的生成效果,这就是事前训练的 Classifier-Free 方案。
Classifier-Guidance 方案最早出自《Diffusion Models Beat GANs on Image Synthesis》[3],最初就是用来实现按类生成的;后来《More Control for Free! Image Synthesis with Semantic Diffusion Guidance》[4] 推广了“Classifier”的概念,使得它也可以按图、按文来生成。Classifier-Guidance 方案的训练成本比较低(熟悉 NLP 的读者可能还会想起与之很相似的 PPLM 模型),但是推断成本会高些,而且控制细节上通常没那么到位。
至于 Classifier-Free 方案,最早出自《Classifier-Free Diffusion Guidance》[5],后来的 DALL·E 2 [1]、Imagen [6] 等吸引人眼球的模型基本上都是以它为基础做的,值得一提的是,该论文上个月才放到 Arxiv 上,但事实上去年已经中了 NeurIPS 2021。应该说,Classifier-Free 方案本身没什么理论上的技巧,它是条件扩散模型最朴素的方案,出现得晚只是因为重新训练扩散模型的成本较大吧,在数据和算力都比较充裕的前提下,Classifier-Free 方案变现出了令人惊叹的细节控制能力。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢