图片

行人重识别(PersonReGIdentification,简称 ReGID)旨在研究多个不相交摄像头间特定行人的匹配问题.文中首次以 复杂场景中需要克服的挑战为行人重识别论文的分类依据,将2010-2021年期间发表的研究成果分为7类,即姿势问题、遮挡 问题、照明问题、视角问题、背景问题、分辨率问题以及开放性问题,该分类方式有利于研究人员从实际需求出发,根据要解决的 问题找到相应的解决方案.首先回顾行人重识别的研究背景、意义及研究现状,总结当前主流的行人重识别框架,统计了2013 年以来发表在三大计算机视觉顶级会议 CVPR,ICCV 以及 ECCV 的论文情况和国家基金项目中 ReGID 的相关项目情况; 其次就复杂场景中面临的七大挑战,分别从问题成因和解决方案两方面对现有文献展开分析,归纳总结出处理各类挑战的主流方 法;然后给出了行人重识别研究中泛化性较高的方法,并列举了当前行人重识别研究的难点;最后讨论了行人重识别未来的发 展趋势.

https://www.jsjkx.com/CN/10.11896/jsjkx.211200207

 

引言

行人重识别是计算机视觉领域的研究热点之一,旨在研 究不重叠的多个摄像区域间对于特定行人的匹配准确率,是 图像检索的子问题[1],多应用于安防和刑侦.我国实现的视 频监控“天网”,就是通过在人流量大的公共区域密集安装监 控设备来实现“平安城市”建设.尽管部分摄像头可转动,但 仍存在监 控 盲 区 和 死 角 等 局 限 性 问 题,ReGID 技 术 弥 补 了摄像设备的视觉局限性.然而,在实际应用中,异时异地相同 行人的图像数据,在姿势、前景背景、光线视角以及成像分辨 率等方面差异较大,使得 ReGID研究具有挑战性. 图1给出了 ReGID 技术框架,描绘了 ReGID 的实现流程 和关键技术.ReGID 技术主要包括特征提取和相似度度量, 具体为:对监控视频帧进行检测和剪裁操作形成候选集,再与 待检索行人 图 像 进 行 对 比,最 后 根 据 相 似 度 排 序 得 到 匹 配 结果.

图片

 

计算机视觉的热点问题主要有图像分割[2G4]、动作识别与 姿势估计[5G9]、目标检测跟踪[10G13]、人脸技术[14G16]和 ReGID等. ReGID技术的研究工作的开展时间较早,1996年 Cai等[17]首 次开展了相关研究.传统 ReGID方法对行人衣着色块及形状 等视觉特征进行手工标注,将标注好的图像通过距离度量学 习[18]得到行人相似度排序,其检索效率低下且人 工 成 本 较 高.随着深度学习在图像领域的不断发展,2014年起,大量 的科研人员将深度学 习 应 用 到 ReGID 中,实 现 了 更 深 层 次 的特征提取和更有效的 度 量 学 习 算 法[19].为 了 提 高 准 确 率,ReGID工作主要针对 两 方 面 进 行:1)针 对 图 像,提 取 更 具有代表性的特征 表 示;2)针 对 距 离,设 计 更 有 效 的 度 量 学习方法.

近年来,在各种国际顶级会议中 ReGID 相关研究论文的 收录数量较多,图2统计了2013年以来发表在三大计算机视 觉顶级会议 CVPR,ICCV 以及 ECCV 的论文情况.

图片

图3给出了2013年以来国家基金项目中 ReGID 项目的 数量变化情况,其整体呈上升趋势.日益增长的 ReGID 项目 数量带来了该技术的激烈竞争,促进了 ReGID技术的发展;国 家基金的资助是科研工作的保障,也促使 ReGID 研究受到越 来越多的关注.

图片

深度学习的引入使 ReGID 的准确率有较大提升,但应用 场景的复杂性及特殊性等仍是 ReGID技术的瓶颈.本文从另 一个角度分析了复杂场景下 ReGID 所面临的问题和挑战,并 简析了各类问题形成的原因,最后总结了各类问题主流的解 决方法,并 给 出 了 未 来 可 行 的 研 究 方 向.本 文 的 主 要 贡 献 如下: 

(1) 首次以复杂场景中存在的实际挑战为分类依据,将 2010-2021年期间发表的 ReGID 论文按问题主导类型进行分类, 主要包括行人姿势变化、目标遮挡、照明差异、视角差 异、背景变化、图像分辨率差异以及开放性问题,如图4所示. 

(2) 通过对文献提出的模型进行归纳,总结出对应的解决 每一类挑战的主流解决方案,便于研究人员从实际需求出发, 根据要解决的问题在本文中快速地找到相应的解决方案,并 在现有研究成果上进行更深入的研究.

(3) 总结了可同时用于解决多个 ReGID 挑战的泛化性方 法.ReGID在实际应用中遇到的问题通常不是相互独立的, 复杂场景下往往会遇到多重挑战.经过对大量综述文章的阅 读,我们总结出了一些现存的泛化性方法,这些方法在解决特 定挑战的同时可以一定程度地帮助解决其他挑战. 

(4) 最后总结了研究中目前尚未解决的难点和未来的发 展方向,如跨域 ReGID问题等.

图片

内容中包含的图片若涉及版权问题,请及时与我们联系删除