论文链接:https://www.ejournal.org.cn/CN/10.12263/DZXB.20220485
海量电子病历(Electronic Medical Record,EMR)数据是支撑医疗智能化研究的重要原料,其结构化的 不完全性给有用信息抽取带来了较大困难. 自命名实体识别(Named Entity Recognition,NER)成为对电子病历进行自 动化信息抽取的核心技术后,近年来受到越来越多的关注 . 鉴于中文电子病历(Chinese Electronic Medical Record, CEMR)独特的文本特征给该研究带来了诸多挑战,本文综述了中文电子病历命名实体识别的概念、相关理论模型以 及制约中文电子病历命名实体识别准确率和识别效率的主要原因,详细分析了中文电子病历命名实体识别近年来的 主要研究进展. 通过对主流模型的实验验证与深入分析,指出了现有模型的不足与改进方向。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢