在深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年 4 月份,特斯拉人工智能部门主管 Andrej Karpathy 开源了其编写的微型 autograd 引擎 micrograd,该引擎还用 50 行代码实现了一个类 PyTorch api 的神经网络库。目前,micrograd 项目的 GitHub star 量达到 1200 星。不久前,天才黑客 George Hotz(乔治 · 霍兹)开源了一个小型 Autograd Tensor 库 tinygrad,它介于 PyTorch 和 micrograd 之间,能够满足做深度学习的大部分要求。上线不到一个月,该项目在 GitHub 上已经获得 1400 星。
代码链接:https://github.com/geohot/tinygrad
视频链接:https://www.youtube.com/channel/UCwgKmJM4ZJQRJ-U5NjvR2dg
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢