第一辆汽车诞生之初,时速只有 16 公里,甚至不如马车跑得快,很长一段时间,汽车尴尬地像一种“很酷的玩具”。人工智能作图的出现也是如此。

AI 作图一开始的 “风格化” 本身就为 “玩” 而生,大家普遍兴致勃勃地尝试头像生成、磨皮,但很快就失去兴趣。直到扩散模型的降临,才给 AI 作图带来质变,让人们看到了 “AI 转成生产力” 的曙光:画家、设计师不用绞尽脑汁思考色彩、构图,只要告诉 Diffusion 模型想要什么,就能言出法随般地生成高质量图片。

然而,与汽车一样,如果扩散模型生成图片时“马力不足”,那就没法摆脱玩具的标签,成为人类手中真正的生产工具。

起初,AI 作图需要几天,再缩减到几十分钟,再到几分钟,出图时间在不断加速,问题是,究竟快到什么程度,才会在专业的美术从业者甚至普通大众之间普及开来?

显然,现在还无法给出具体答案。即便如此,可以确定的是 AI 作图在技术和速度上的突破,很可能已经接近甚至超过阈值,因为这一次,OneFlow 带来了字面意义上 “一秒出图” 的 Stable Diffusion 模型。

  • OneFlow Stable Diffusion 使用地址:https://github.com/Oneflow-Inc/diffusers/wiki/How-to-Run-OneFlow-Stable-Diffusion

  • OneFlow 地址:https://github.com/Oneflow-Inc/oneflow/

     

比快更快,OneFlow 一马当先

下面的图表分别展示了在 A100 (PCIe 40GB / SXM 80GB)、RTX 2080 和 T4 不同类型的 GPU 硬件上,分别使用 PyTorch, TensorRT, AITemplate 和 OneFlow 四种深度学习框架或者编译器,对 Stable Diffusion 进行推理时的性能表现。

图片

图片

 

对于 A100 显卡,无论是 PCIe 40GB 的配置还是 SXM 80GB 的配置,OneFlow 的性能可以在目前的最优性能之上继续提升 15% 以上

特别是在 SXM 80GB A100 上,OneFlow 首次让 Stable Diffusion 的推理速度达到了 50it/s 以上,首次把生成一张图片需要采样 50 轮的时间降到 1 秒以内,是当之无愧的性能之王

图片

在 T4 推理卡上,由于 AITemplate 暂不支持 Stable Diffsuion,相比于目前 SOTA 性能的 TensorRT,OneFlow 的性能是它的 1.5 倍

图片

而在 RTX2080 上,TensorRT 在编译 Stable Diffsuion 时会 OOM ,相比于目前 SOTA 性能的 PyTorch,OneFlow 的性能是它的 2.25 倍

综上,在各种硬件以及更多框架的对比中,OneFlow 都将 Stable Diffusion 的推理性能推向了一个全新的 SOTA。

内容中包含的图片若涉及版权问题,请及时与我们联系删除