知识图谱嵌入(Knowledge graph embedding, KGE)是一种日益流行的技术,旨在将知识图谱中的实体和关系表示为低维的语义空间,在链接预测、知识推理和知识补全等领域有着广泛的应用。在本文中,我们对现有的基于表示空间的KGE技术进行了系统的回顾。特别地,我们基于表示空间的三个数学角度 (1)代数角度、(2)几何角度和(3)分析角度建立了一个细粒度分类来对模型进行分类。在深入KGE模型及其数学性质之前,我们先介绍基本数学空间的严格定义。我们进一步讨论了这三类不同的KGE方法,并总结了空间优势如何在不同的嵌入需求中发挥作用。通过整理下游任务的实验结果,我们还探索了数学空间在不同场景下的优势及其背后的原因。进一步从表征空间的角度提出了一些有前景的研究方向,希望能启发研究者在设计KGE模型及其相关应用时更多地考虑其数学空间性质。
论文链接:https://arxiv.org/pdf/2211.03536.pdf
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢