到目前为止,虽然机器翻译无法完全做到「信、达、雅」,但翻译结果的准确性对于一般应用场景来说已经足够。

但目前机器翻译相关工作主要关注于「书面语言」,也就是通过文字进行互译,而在全世界范围下有7000多种语言,其中超过40%的语言根本没有文字系统,这也让「通用机器翻译」的开发变得更难。

比如汉语方言之一的「闽南语」就是以口语为主的语言,全世界大约有7000多万人使用闽南语。

 

 

最近,Meta发布了第一个「闽南语」翻译系统,使用语音对语音翻译(speech-to-speech translation, S2ST)技术,让闽南语的使用者也能与讲英语的人流畅对话!

 

 

论文链接:
https://research.facebook.com/file/799432337944526/Speech-to-speech-translation-for-a-real-world-unwritten-language.pdf(opens new window)

为了开发这种新型语音翻译系统,研究人员必须克服传统机器翻译系统的诸多难题,包括数据收集、模型设计和评估。

训练数据收集模型选择发布基准数据集,论文中提出了一个端到端的解决方案,在大规模无标注的语音数据集中自动挖掘数据模式,并采用伪标签(pesudo-labeling)生成弱监督数据。

论文的第一作者Peng-Jen Chen出生和成长与于中国台湾,他讲普通话,但他的父亲主要讲闽南语,所以他们俩在进行复杂对话时感到很棘手。Peng-Jen Chen开发这个项目的出发点就是让他的父亲能够用闽南语和每个人进行交流,因为这是他说起来最舒服的语言。

下面是扎克伯格和Peng-Jen Chen分别用英语和闽南语的翻译对话,模型在这两种语言之间可以互相翻译。

该开源翻译系统是 Meta 的通用语音翻译器(UST)项目的一部分,旨在开发新的人工智能方法,研究人员希望这些方法最终能够实现所有现存语言的实时语音对语音翻译,主要是口语语言。

这也是Meta布局元宇宙的一步大棋,口头交流可以更容易打破人们的交流障碍,让人们无论身处何地都能团结在一起,尤其是在元宇宙中。

内容中包含的图片若涉及版权问题,请及时与我们联系删除