图片

时间序列异常检测在研究领域和应用中有着广泛的应用,包括制造业和医疗健康。异常的出现可能表明出现了新的或意料之外的事件,例如生产故障、系统缺陷或心脏跳动,因此特别值得关注。时间序列的巨大规模和复杂模式促使研究人员开发专门的深度学习模型来检测异常模式。本综述的重点是通过使用深度学习来提供结构化的、全面的、最先进的时间序列异常检测模型。它提供了基于因素的分类法,将异常检测模型划分为不同的类别。除了描述每种类型的基本异常检测技术外,还讨论了其优点和局限性。此外,本研究包含了近年来跨不同应用领域的时间序列深度异常检测实例。最后总结了在采用深度异常检测模型时研究中存在的问题和面临的挑战。

论文链接:https://arxiv.org/pdf/2211.05244.pdf

内容中包含的图片若涉及版权问题,请及时与我们联系删除