近日,Meta AI 构建了一个神经定理证明器 HyperTree Proof Search(HTPS),已经解决了 10 场国际数学奥林匹克竞赛 (IMO) 中的问题,比以往任何系统都更多。此外,该 AI 模型的性能比数学基准 miniF2F 上的 SOTA 方法高出 20%,比 Metamath 基准上的 SOTA 方法高出 10%。

论文地址:https://arxiv.org/pdf/2205.11491.pdf(opens new window)
在一定意义上,定理证明要比构建 AI 来玩国际象棋等棋盘游戏更具挑战性。当研究者试图证明一个定理时,可能移动的动作空间不仅很大而且有可能是无限的。相比较而言,在国际象棋或围棋中,这些游戏的一系列走法会被预测出来,即使算法没有给出最好的走法也影响不大。而在定理证明中,当算法走入死胡同就没办法解决了,性能再好的求解器也只是白费力气。Meta AI的新方法解决了这个棘手的问题,LeCun也转推称赞。

我们用一个例子来说明 HTPS 的优势:假设 a 和 b 都是质因子为 7 的自然数,并且 7 也是 a + b 的质因子,如果假设 7^7 可以整除(a + b)^7 - a^7 - b^7,那么请证明 a + b 至少是 19。
假如让人类来证明的话,他们大概率会用到二项式。而 HTPS 使用 Contraposition 方法,大大简化了方程,然后再检查多种不同的情况。
contrapose h₄,
simp only [nat.dvd_iff_mod_eq_zero, nat.add_zero] at *,
norm_num [nat.mod_eq_of_lt, mul_comm, nat.add_mod] at h₄,
如下图为本文模型发现的证明示例,即在 miniF2F 中另一个 IMO 问题的证明:

内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢