储层计算(Reservoir Computing,RC)是一个从循环神经网络理论中得出来的计算框架。该框架有可能减少数据处理时间,同时还可以提高神经形态设备的能效。
北京大学的研究人员推出了一种基于α-硒化铟(α-In2Se3)的新型人工突触,有助于更有效地在神经形态设备中重建生物神经过程。这种突触可能对储层计算应用具有非常重要的意义。
北京大学教授、人工智能研究院类脑智能芯片研究中心主任杨玉超说:「我们的想法源于对一种简单策略的需求,该策略可用于利用物理系统的动态响应进行计算,而物理储层计算是实现这一目标的有前途的框架,In2Se3是一种非常有趣的材料,也是储层计算的良好平台,其丰富的物理特性支持创建多模式、多尺度的储层计算系统,我们希望这将扩展物理储层计算的应用场景。」
该研究以「 An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing 」为题,发布在《Nature Electronics》上。
图片
论文链接:https://www.nature.com/articles/s41928-022-00847-2

内容中包含的图片若涉及版权问题,请及时与我们联系删除