采访 & 整理 李梦佳,校对:熊宇轩 ,全文参见智源社区公众号

神经科学究竟如何启发AI?不同路径如何殊途同归?

智源社区采访了NeuroAI白皮书的第一署名作者,来自冷泉港实验室(Cold Spring Harbor Laboratory)的美国神经科学家Anthony Zador,请他分享了在神经科学与AI交叉领域研究的经历和期许。

神经科学究竟如何启发AI?不同路径如何殊途同归?智源社区采访了NeuroAI白皮书的第一署名作者,来自冷泉港实验室(Cold Spring Harbor Laboratory)的美国神经科学家Anthony Zador,请他分享了在神经科学与AI交叉领域研究的经历和期许。

近日,Yann LeCun、Yoshua Bengio、Matthew Botvinick(DeepMind)、Jeff Hawkins等人工智能和神经科学领域的多位著名学者近日发表 NeuroAI 白皮书-《迈向下一代人工智能:催化神经人工智能革命》。

白皮书指出,「图灵测试」一直被奉为判断机器是否具有人类级别智能的重要指标,而目前的自然语言处理系统在因果推理、常识推理、语义理解方面仍然存在缺陷。科学家们认为,动物的感觉运动能力可能是它们理解世界的基础。

为此,白皮书的作者们提出了「具身图灵测试」,作为 NeuroAI 的终极挑战。能够通过「具身图灵测试」的智能体需要具备与人类和其他动物的交互相比的高级的感觉运动能力。这些高级的感觉运动能力几乎是所有动物所共有的,使动物能够适应新的环境。高级感觉运动能力的特征包括(但不限于):

(1)与世界交互。有目的地移动,并与环境交互。现有的机器人技术在控制身体和操纵物体方面与动物的能力还相差甚远。神经科学可以提供设计适配人工系统的模块化、层次化架构的指导原则,使系统具备这些能力,也可以启发其它形式的「智能」。

(2)动物行为的灵活性。以个体动物能够产生的行为相对应的方式,参与大量灵活多样的任务。为了在不断变化的世界中成功,智能体必须灵活,并利用事物发展的一般知识掌控新局面。

(3)能源效率。根据大脑灵活的循环架构指导循环电路训练机制的设计,提升系统的能源效率。生物智能系统利用能源的效率远远高于现有的人工智能机器。

总结来讲,白皮书认为,神经科学长期以来一直是推动人工智能(AI)发展的重要驱动力,NeuroAI 领域的基础研究将推动下一代人工智能的进程。而今年10月的一场twitter风波将「AI是否需要神经科学」的争论推至台前,反对者甚至认为,神经科学从来都没推动过人工智能,因为发明Transformers / ADAM的人并没有看过一篇神经科学的论文。对此,白皮书作者之一的Anthony Zador在访谈中给出了更详细的观点,以下为采访全文(智源社区做了不改变原意的编辑)。     

Anthony Zador

Anthony Zador,美国神经科学家,冷泉港实验室主任,2015年被《外交政策》杂志评为全球百大思想家。在神经科学与人工智能交叉领域方面,他是 2004 年计算与系统神经科学 (COSYNE) 顶会以及NAISYS(神经科学到人工智能系统)会议的联合创始人。目前,他的实验室主要研究大脑神经回路如何产生复杂行为,包括听觉皮层如何处理声音等。近期他开创了一种连接组映射的分子生物学新方法,显著提升在单细胞水平上映射神经元回路的速度。冷泉港实验室(The Cold Spring Harbor Laboratory,缩写CSHL),有132年历史,为享誉全球的非营利性私人科学研究与教育中心,主要成就为分子生物学领域,共诞生8位诺贝尔奖得主,被誉为世界生命科学圣地、“分子生物学摇篮”,名列世界影响最大的十大研究学院榜首。

Q:关于近期发表的NeuroAI白皮书,这项工作的指导思想是?

A:基本思想是,如果我们看人工智能的历史,它是完全与神经科学的历史交织在一起的。如果你回到现代人工智能的最开端,现代人工智能的第一篇论文,可以说是第一篇神经网络论文,是 McCulloch-Pitts 1943 年的这篇论文,它提出了人工神经元的想法。1946年,冯·诺依曼提出的冯·诺依曼机(所有现代数字计算机的基础)正是受到了这篇论文的启发。1957年提出的感知机(Perceptron)也是生物神经细胞的简单抽象。 

回溯人工神经网络的历史。例如,卷积神经网络 CNN 明确地受到 Hubel 和 Wiesel 的启发。20年来,大多数人工智能和人工技术的重大进步,有很多都来自神经科学。这篇工作的核心思想就是希望两方要保持这些联系牢固, 神经科学领域的人,以及人工智能领域的人,在两个学科方面都受过同样训练的人。所以我们要做的就是团结起来,重新团结,重新团结起来。核心思想就是汲取神经科学中的养分,将它们应用到AI当中。

Q:白皮书强调了 NeuroAI 革命。你认为这场革命的最终目标是什么?它通向哪里?

 A:人们总是在说AGI,我不喜欢这个术语,因为我不相信智能的通用性,智能应该是非常具体的。每个智能体、每个有机体都有其特定的偏见。这就像没有免费午餐定理,你不可能同时擅长所有事情。我更喜欢AHIartificial human intelligence)这个词, 人们普遍想象这样一个智力金字塔,底部是蠕虫,或水母,然后再高一点,可能有鱼,最后是老鼠、猴子和黑猩猩,然后是人类。我认为这是完全错误的。我认为,每个不同的有机体都非常擅长解决各自需要解决的问题。所以NeuroAI革命的终极目标应该是AHI。现在缺失的部分(需要解决的部分)不是那些使人类成为独特人类的小部分,而是其他一切。

有一个理论叫做莫拉维克悖论,莫拉维克是一名AI研究员的名字。1988年,他写了一本关于这一概念的书,核心思想是,对人类来说很难的事情对计算机来说往往很容易。对人类来说容易的事情对计算机来说却非常困难。

国际象棋是一项具有挑战的游戏。大多数人都不是很擅长。1997年,计算机在这项技术上打败了人类,IBM的“深蓝”打败了世界国际象棋冠军卡斯帕罗夫。其他游戏也是如此。显然,计算机在计算乘法之类的方面要厉害得多。但如今,人工智能目前的发展轨迹正在让人工智能解决我们认为独特的人类问题,比如语言。大规模语言模型虽然仍然不完美,但是已然相当接近人类的语言能力。但目前我们还没有可以与物理世界交互的人工智能体。比如说,我的梦想是拥有一台可以装洗碗机的洗碗机,可以帮我铺床、洗衣服,因为那样我就不用做那么多的家务了。而我们距离那个目标还非常遥远。

5 年前,人们说人们预测人工智能革命会颠覆经济,例如取代开车的人。我有一辆特斯拉,它还不会自己开呢。开车驾驶涉及与世界互动。所以我最近还在和要上大学的孩子们开玩笑说,如果他们未来想保住自己的饭碗,应该当水管工。因为AI没法很快取代水管工。

冷泉港实验室

Q:如何理解具身图灵测试?

A:「具身图灵测试」其实最开始是别人提出来的,在我们的这篇工作中强化了。标准的图灵测试是指一个人工智能系统可以在对话中愚弄人类,目前我们已经非常接近了。最好的语言模型已经可以骗人,得出的文本甚至比很多人说话都连贯通顺。而具身图灵测试,则是关于测试智能体与世界互动的方式,比如说打网球或骑自行车。

换句话说,一个智能体要能做这个星球上的每只动物毫不费力可以做的事情。所以我想目标是重新思考认知的基础,但要从下到上进行底层的重建。

Q:如您所说,目标是AHI,我们如何才能实现这个目标?换句话说,如何提供切实可行的技术路线图?

 A:这是一个开放性的问题。这篇文章的作者列表上有20多个人,都来自不同机构,但我只和他们中的几个有过合作。关于具体如何推进,可能想法各不相同。其实这不像说,有一个列表,上面写好了我们要做1234。

我认为,核心思想就是,为了取得进步,忽视自然、神经科学要教给我们的东西是愚蠢的。打个比方,想象一下,一艘来自外太空的宇宙飞船并降落在地球上,上面有一大堆先进的技术。反重力设备等。于是我们也想建造反重力设备,把它拆开,尽可能多地学习如何建造反重力机器。造AI也是同理,我们四周就遍布着各种让人惊奇的例子,因为遇到的每只动物几乎都是自然、聪明,且能与世界交互的。所以如果不去学习神经科学是愚蠢的。我们已经了解了动物智力的产生,以及神经元和构建模块的知识,只是需要知道以什么样的方式将他们组合在一起。

我们已经完成了一半的逆向工程,已经把这个问题拆解开了。现在需要的是下半场。神经科学的意义在于将它们拆开的时候知道每一部分是什么,而人工智能则侧重于工程,能够以一种有效且有用的方式将它们组合在一起。这才是我们所追求的目标。

Q:在理想状况下,智能机器能像人脑一样稳定、高效吗?

A:我认为,与生物相比,硅基不一定是差一等的基底,甚至可能更好。问题不在于物理基板。问题是我们对生物计算的工作原理了解不够,无法构建复制它的物理系统。这就需要在人工智能工程和神经科学研究之间来回切换。

Q:如果我们想实现《西部世界》中的世界,主要的障碍是什么?

A:我看过几季《西部世界》,它们似乎并不是理想中的AI,很多角色最后下场不怎么样。物理学家Richard Feynman有一句名言——我无法创造出我不理解的事物,“What I cannot create, I do not understand”。也就是只有真正理解了才能够构建。

Q:如何构建「意识」?

A:我能想到的最好方法就是造人,生孩子(笑)。我有两个小孩,我认为他们大部分时间都意识清醒。所以这是最简单的方法,我猜最近大约有 70 亿人都这样做。

另外就涉及到AHI,建立一个像我们一样思考的人工系统,以与我们相同的方式思考,和他交谈,看看他脑子里到底在想些什么。最近的一个报道(https://www.cnn.com/2022/07/23/business/google-ai-engineer-fired-sentient)讲到,有位谷歌工程师认为与他交谈甚欢的大型语言模型有意识,尽管别人都认为是他错了,他却信誓旦旦。

更多内容请参考  https://mp.weixin.qq.com/s/gr90kReYM9OJX3XUFiCgAQ

 

 

 

 

内容中包含的图片若涉及版权问题,请及时与我们联系删除