图学习旨在学习现实世界中常见的复杂节点关系和图的拓扑结构,如社交网络、学术网络和电子商务网络等。这些关系使得图数据与传统的表格数据不同,其中节点依赖于非欧氏空间,包含了丰富的信息。图学习从图论发展到图数据挖掘,现在被赋予表示学习的能力,使其在各种场景中取得了出色的性能,甚至包括文本、图像、化学和生物。由于在现实世界中的广泛应用前景,图学习已经成为机器学习中一个热门且有前景的领域。
近年来,已有成千上万的研究成果被提出用于解决图学习中的各种问题,引起了学术界越来越多的关注,因此对已有的有价值的研究成果进行综述变得至关重要。尽管一些研究人员已经注意到这种现象,并完成了关于图学习的令人印象深刻的调研。然而,由于图学习的快速扩展,它们未能以更合乎逻辑的方式将相关目标、方法和应用联系起来,并涵盖当前丰富的场景和具有挑战性的问题。
论文链接:https://arxiv.org/pdf/2212.08966.pdf
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢