近日,来自南京大学张绍群博士和周志华教授提出了一个名为 Flexible Transmitter (FT) 的模型,这是一种具备灵活可塑性的新型生物拟真神经元。
FT 模型利用一对参数来建模神经元之间的传输递质(transmitter),并设置一个神经递质调节的记忆单元来记录所关注神经元的长期学习信息。因此,该研究将 FT 模型形式化为一个二元二值函数,常用的 MP 神经元模型是其特殊形式。FT 模型可以处理更加复杂的数据,甚至时序信号。
为了展示 FT 模型的能力和潜力,研究者提出了 Flexible Transmitter Network (FTNet)。FTNet 基于最常见的全连接前馈架构而构建,并使用 FT 神经元作为其基本构造块。FTNet 允许梯度计算,并且可以通过在复数域中的反向传播算法来实现。在一系列任务上的实验结果展示了 FTNet 的优越性能。这项研究为神经网络提供了另一种基本构造块,展示了开发具有神经元可塑性的人工神经网络的可行性。
评论
沙发等你来抢