无源无监督领域自适应(SFUDA)旨在将预先训练的源模型适配到未标记的目标域,而无需访问标记良好的源数据,由于数据隐私、安全和传输问题,SFUDA有广阔的应用领域。来自北卡罗来纳大学教堂山分校等学者发布了《无源领域自适应综述》,现有的SFUDA方法进行了及时和系统的文献综述

图片

论文链接:https://arxiv.org/pdf/2301.00265.pdf

基于深度学习的无监督域适应(UDA)因解决不同域之间分布差异导致的域偏移问题而引起了人们的关注。现有UDA方法高度依赖源域数据的可访问性,而在实际场景中,由于隐私保护、数据存储和传输成本以及计算负担等原因,可访问性通常受到限制。为了解决这一问题,近年来提出了许多无源无监督域适应(source-free unsupervised domain adaptation,简称SFUDA)方法,在源数据不可访问的情况下,从预训练的源模型到无标记的目标域进行知识迁移。全面回顾这些研究工作具有重要意义。本文从技术角度对现有的SFUDA方法进行了及时和系统的文献综述。将当前的SFUDA研究分为两组,即白盒SFUDA和黑盒SFUDA,并根据其使用的不同学习策略进一步将其划分为更细的子类别。研究了每个子类别中方法的挑战,讨论了白盒和黑盒SFUDA方法的优缺点,总结了常用的基准数据集,并总结了不使用源数据提高模型泛化能力的流行技术。最后讨论了该领域未来的研究方向。

内容中包含的图片若涉及版权问题,请及时与我们联系删除