来自今天的爱可可AI前沿推介

[CV] Teaching Computer Vision for Ecology

E Cole, S Stathatos, B Lütjens, T Sharma, J Kay, J Parham, B Kellenberger, S Beery
[Caltech & MIT & Wild Me & Yale University]

教生态学专家学计算机视觉

要点:

  1. 计算机视觉可以通过自动分析来自自动拍照相机、无人机和卫星等传感器的原始图像来加速生态学研究;
  2. 计算机视觉是一门新兴学科,生态学家接触和了解并不多;
  3. 通过一个密集的实践夏令营研讨,教授了一群多元化的生态学家计算机视觉系统的原型设计和评估;
  4. 确定了在教授计算机视觉给生态学家过程中遇到的挑战和改进的机会,并提出最佳实践。

一句话总结:
成功地通过一个密集的实践夏令营,教授了一群多元化的生态学家计算机视觉,在这个过程中确定了挑战和改进的机会。

摘要:
计算机视觉可以通过自动分析来自自动拍照相机、无人机和卫星等传感器的原始图像来加速生态学研究。但是,计算机视觉是一门新兴学科,生态学家接触和了解并不多。本文讨论了在一个密集的实践夏令营研讨中教授一群多元化的生态学家计算机视觉系统的原型设计和评估的经验。解释了夏令营研讨的结构,讨论常见挑战,并提出最佳实践。本文旨在面向教授跨学科计算机视觉的计算机科学家,但也可能对学习使用计算机视觉的生态学家或其他领域专家有用。

Computer vision can accelerate ecology research by automating the analysis of raw imagery from sensors like camera traps, drones, and satellites. However, computer vision is an emerging discipline that is rarely taught to ecologists. This work discusses our experience teaching a diverse group of ecologists to prototype and evaluate computer vision systems in the context of an intensive hands-on summer workshop. We explain the workshop structure, discuss common challenges, and propose best practices. This document is intended for computer scientists who teach computer vision across disciplines, but it may also be useful to ecologists or other domain experts who are learning to use computer vision themselves.

论文链接:https://arxiv.org/abs/2301.02211
图片
图片
图片
图片

内容中包含的图片若涉及版权问题,请及时与我们联系删除