Dragon Lake Parking (DLP) 数据集以无人机正射航拍视角,提供了大量经过标注的高清 4K 视频和轨迹数据,记录了在停车场环境内,不同类型的车辆、行人和自行车的运动及交互行为。数据集时长约 3.5 小时,采样率为 25Hz,覆盖区域面积约为 140 m x 80 m,包含约 400 个停车位,共记录了 5188 个主体。数据集提供两种格式:JSON 和原视频 + 标注,可服务的研究方向包括:大规模高精度目标识别和追踪、空闲车位检测、车辆和行人的行为和轨迹预测、模仿学习等。
在 2022 年 10 月刚刚结束的第 25 届 IEEE 智能交通系统国际会议 (IEEE ITSC 2022) 中,来自加州大学伯克利分校的研究者们发布了首个针对停车场景的高清视频 & 轨迹数据集,并在此数据集的基础上,利用 CNN 和 Transformer 架构提出了名为 “ParkPredict+” 的轨迹预测模型。
-
数据集主页、试用和下载申请:https://sites.google.com/berkeley.edu/dlp-dataset(如无法访问,可尝试备用页面 https://cutt.ly/dlp-notion )
-
数据集 Python API:https://github.com/MPC-Berkeley/dlp-dataset
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢