来自今天的爱可可AI前沿推介
[LG] A survey and taxonomy of loss functions in machine learning
L Ciampiconi, A Elwood, M Leonardi, A Mohamed, A Rozza
[lastminute.com group]
机器学习损失函数综述
要点:
-
对各种机器学习应用的33种常用损失函数进行调研,包括分类、回归、排序、样本生成和基于能源建模; -
损失函数的直观分类,按任务、学习范式和基本策略来进行组织; -
为初学者和高级机器学习从业者在为他们的问题定义适当损失函数时提供使用参考。
一句话总结:
对各种机器学习应用的33种常用损失函数进行调研,按易于理解的分类进行整理,作为从业者在为问题定义适当损失函数时提供参考。
摘要:
大多数最先进的机器学习技术,都围绕着损失函数的优化。因此,定义适当的损失函数对于成功解决该领域的问题至关重要。本文对各种不同应用中最常用的损失函数进行了调研,分为分类、回归、排序、样本生成和基于能源建模。本文将33种不同的损失函数,组织成容易理解的分类。每种损失函数都有其理论支持,本文描述了其最适合使用的场景。本综述旨在为初学者和高级机器学习从业者提供最基本的损失函数参考。
Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.
论文链接:https://arxiv.org/abs/2301.05579
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢