预测药物-靶标相互作用是药物发现的关键。近期,虽然基于深度学习的方法显示出强有力的性能,但是仍然存在两个挑战:如何明确地建模和学习药物和目标之间的局部相互作用以更好地预测和解释,以及如何优化新药物-目标对预测的泛化性能。
英国谢菲尔德大学(The University of Sheffield)和阿斯利康的研究人员合作开发了 DrugBAN,这是一个深度双线性注意网络(BAN)框架,具有域适应性,可以显式学习药物和目标之间的成对局部相互作用,并适应分布外的数据。
DrugBAN 对药物分子图和目标蛋白序列进行预测,使用条件域对抗性学习来对齐不同分布中学习到的交互表示,以便更好地泛化新的药物-目标对。在域内和跨域设置下对三个基准数据集的实验表明,DrugBAN 相对于五个当前最先进的基线模型实现了最佳的整体性能。此外,可视化学习到的双线性注意力图可以从预测结果中提供可解释的见解。
该研究以「Interpretable bilinear attention network with domain adaptation improves drug–target prediction」为题,于 2023 年 2 月 2 日发布在《Nature Machine Intelligence》。
论文链接:论文链接:https://www.nature.com/articles/s42256-022-00605-1
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢