论文链接:https://arxiv.org/pdf/2302.08261v1.pdf
将人工智能(AI)融入药物发现领域已经成为一个日益增长的跨学科科学研究领域。然而,传统的人工智能模型在处理复杂的生物医学结构(如2D或3D蛋白质和分子结构)和为输出提供解释方面存在严重限制,这阻碍了它们的实际应用。近年来,图机器学习(Graph Machine Learning, GML)因其对图结构生物医学数据建模并研究其属性和功能关系的出色能力而获得了相当大的关注。尽管进行了广泛的努力,GML方法仍然存在一些缺陷,例如处理监督稀疏性的能力有限,在学习和推理过程中提供可解释性,以及在利用相关领域知识方面的有效性。作为回应,最近的研究提出将外部生物医学知识整合到GML流程中,以在有限的训练实例下实现更精确和可解释的药物发现。然而,这一新兴的研究方向还没有一个系统的定义。本综述对长期存在的药物发现原理进行了全面的概述,提供了图结构数据和知识数据库的基础概念和前沿技术,并正式总结了用于药物发现的知识增强图机器学习(KaGML)。对相关KaGML工作的彻底回顾,按照精心设计的搜索方法收集,按照新定义的分类法分为四类。为促进这一迅速兴起的领域的研究,还分享了收集的实用资源,这些资源对智能药物发现有价值,并对未来进步的潜在途径进行了深入讨论。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢