最近,AI Agent忽然再次爆火。
什么是AI智能体?
它们是一种自动的智能体,以最简单的形式中在循环中运行,每次迭代时,它们都会生成自我导向的指令和操作。因此,它们不依赖人类来指导对话,并且是高度可扩展的。
大语言模型的出现,无疑给AI智能体的发展带来了全新的想象力。
这也引起了无数AI大佬和科技巨头的兴趣。今年加入OpenAI的大牛、前特斯拉AI总监Karpathy近日就在一次开发者活动上表示:AI智能体,代表了AI的一种未来!其实,早在今年三、四月,就有过一轮AI智能体的大爆发,仿佛巧合一样,在短短两周内,斯坦福西部世界小镇、BabyAGI、AutoGPT等多个智能体,就如雨后春笋一般冒出来。
甚至有人发出号召:别卷大语言模型了,咱们是卷不过OpenAI的,但要说起AI智能体,他们并不比我们有经验多少。
说不定,一不小心自己就能卷成AI智能体赛道上的「OpenAI」!
AI智能体大爆发,让AGI雏形初显?
LangChain实现
chat_turn_limit, n = 30, 0
while n < chat_turn_limit:
n += 1
user_ai_msg = user_agent.step(assistant_msg)
user_msg = HumanMessage(content=user_ai_msg.content)
print(f"AI User ({user_role_name}):\n\n{user_msg.content}\n\n")
assistant_ai_msg = assistant_agent.step(user_msg)
assistant_msg = HumanMessage(content=assistant_ai_msg.content)
print(f"AI Assistant ({assistant_role_name}):\n\n{assistant_msg.content}\n\n")
if "" in user_msg.content:
break
举个栗子
Yohei Nakajima在3月28日发布了「任务驱动的自主智能体」(Task-driven Autonomous Agent),并在4月3日开源了BabyAGI项目。
BabyAGI的关键特点是只有三个智能体:任务执行智能体(Task Execution Agent)、任务创建智能体(Task Creation Agent)和任务优先级智能体(Task Prioritization Agent)。
1)任务执行智能体按顺序完成列表中的任务
2)任务创建智能体根据先前任务的目标和结果创建新任务
3)任务优先级智能体对任务进行重新排序
然后,这个简单的过程将会不断地重复。
在LangChain的网络研讨会上Yohei称,他设计BabyAGI就是模拟自己的工作方式。
文章地址:https://yoheinakajima.com/task-driven-autonomous-agent-utilizing-gpt-4-pinecone-and-langchain-for-diverse-applications/
具体而言,他每天早上从待办事项清单中解决第一项任务,然后依次完成任务。
如果出现新任务,他只需将其添加到清单中。
在一天结束时,他重新评估和重新排序清单。然后将这种方法映射到智能体的工作流程中。
用上了这个项目,相当于让大佬自己给我们24小时不停歇的打工。
BabyAGI流程图(有趣的是,这篇研究论文是在GPT-4的辅助下完成的)
BabyAGI + LangChain
在LangChain框架中,运行BabyAGI非常简单。
首先,创建一个BabyAGI控制器,其中包含三个链:
1)任务创建链(TaskCreationChain)
2)任务优先级链(TaskPrioritizationChain)
3)执行链(ExecutionChain)
然后,在一个(潜在的)无限循环中运行它们。
通过Langchain,可以定义最大迭代次数,这样它就不会无限运行并消耗掉所有的OpenAI API额度。
OBJECTIVE = "Write a weather report for SF today"
llm = OpenAI(temperature=0)
# Logging of LLMChains
verbose=False
# If None, will keep on going forever
max_iterations: Optional[int] = 3
baby_agi = BabyAGI.from_llm(
llm=llm,
vectorstore=vectorstore,
verbose=verbose,
max_iterations=max_iterations
)
baby_agi({"objective": OBJECTIVE})
下面是运行2次迭代后的结果:
BabyAGI + LangChain工具 = 超能力
正如上图所示,BabyAGI只「执行」有大语言模型回复的内容。
借助LangChain工具的强大功能,智能体可以在「执行」过程中利用各种工具,例如用谷歌在互联网上搜索信息。
下面这个例子,展示的就是「执行」用谷歌来搜索旧金山当前天气的过程。
BabyAGI的应用潜力,可以说是巨大的——只需要制定一个目标,它就会自己去执行。
不过,它还是缺少一个可以和用户进行更多交互的UI。
比如,在BabyAGI为用户安排邀约之前,应该先进行确认。
我们来看一些实际的使用案例吧:
Cognosys
网址:https://www.cognosys.ai/
它是BabyAGI的网络版。
免费版本可以访问ChatGPT,执行最多7个智能体循环。
收费版21刀一个月,无限访问GPT-4,执行最多20个智能体循环。
Do Anything Machine
https://www.doanythingmachine.com/
这是一个自动执行每日任务清单的智能体,能在连接了ChatGPT之后帮助用户自动执行每日代办事项。
可以连接包括ChatGPT在内的各种插件去执行你的待办事项。
只不过现在使用还需要先加入等待名单。
看着自己的待办事项自动消失真是一件很解压的事情,多等等也是值得的。
God Mod
https://godmode.space/
这是一个通过ChatGPT帮你执行各种任务的工具。
需要用户绑定自己的GPT账户API之后,在这个类似ChatGPT的界面中输入的要求。
他会帮你分解成多步,然后通过ChatGPT来提供解决方案。
虽然刚刚介绍的这4个AI智能体,仍处于早期开发阶段,但它们已经展示出了令人印象深刻的成果和潜在应用。
毫无疑问,自主AI智能体将会是一个非常有前景的领域。
Karpathy在活动中畅想道:未来的AI智能体可能不是单独的个体,而是非常多的AI智能体组织,甚至,会出现一种AI智能体文明。
Karpathy表示,在2016年左右,自己早期在OpenAI工作时,当时的业界潮流就是研究如何用强化学习来改进AI智能体。
很多项目都在基于类似雅达利游戏,来制作AI玩家。
而5年后的今天,因为有了全新的技术手段,AI智能体重新成为了大有前途的方向。再也没有人像2016年那样,用强化学习来研究智能体了。
在活动最后,Karpathy对在场的开发者发起了鼓舞:在座的各位构建的AI智能体,其实处于当代AI智能体的最前沿,比起你们,其他大型的LLM机构,比如OpenAI、DeFi等,并不算处于最前沿。
比如,OpenAI非常擅长训练Transformer大语言模型,如果一篇论文提出了某种不同的训练方法,OpenAI内部会觉得是小case,都是咱们玩剩下的。
然而,每当有新的AI智能体论文出现,OpenAI内部都会非常兴奋,立刻展开热烈的讨论。
如果没有在做GPT-5,那OpenAI是不是正在暗中发力,做起了大模型智能体呢?让我们静静等待。
PS:顺便一提,关于在上述智能体中大显身手的LangChain,吴恩达今日刚刚上线了新课程《LangChain:构建与数据对话的聊天机器人》。
https://towardsdatascience.com/4-autonomous-ai-agents-you-need-to-know-d612a643fa92
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢