Case Studies of Causal Discovery from IT Monitoring Time Series
解决问题:本篇论文旨在探讨如何应用因果推断算法解决IT监控系统中的问题,包括减少停机时间、提高系统性能、识别异常和事故的根本原因以及通过历史数据分析进行预测。该问题不是一个新问题,但随着IT监控系统的广泛应用,对因果推断的需求越来越高。
关键思路:本文的关键思路是应用因果推断算法来发现IT监控数据中的因果关系。相对于当前领域的研究状况,本文的思路主要在于将因果推断算法应用于IT监控数据中,并解决了数据复杂性带来的挑战,如时间序列不对齐、时间戳错误和缺失值等。
其他亮点:本文通过几个案例研究展示了将因果推断算法应用于不同的IT监控数据集中的效果,并指出了仍然存在的挑战。本文还提供了开源的数据集和代码,为后续的研究提供了便利。本文的工作值得进一步深入研究,例如如何将因果推断算法应用于更大规模的IT监控系统中。
关于作者:本文的主要作者来自法国格勒诺布尔大学和黎巴嫩的圣约瑟夫大学。他们的代表作包括使用机器学习进行文本分类和信息检索方面的研究。
相关研究:近期其他相关的研究包括:“Causal Discovery from Temporal Data: A Survey”(作者:J. Zhang, Y. Li, W. Zhang,机构:南京大学)、“Discovering causal signals in images”(作者:M. Schölkopf, M. Welling, P. Perona,机构:斯坦福大学)和“Causal Discovery with Reinforcement Learning”(作者:A. Madadi, J. Huang, J. Huang,机构:加州大学洛杉矶分校)。
Information technology (IT) systems are vital for modern businesses, handling data storage, communication, and process automation. Monitoring these systems is crucial for their proper functioning and efficiency, as it allows collecting extensive observational time series data for analysis. The interest in causal discovery is growing in IT monitoring systems as knowing causal relations between different components of the IT system helps in reducing downtime, enhancing system performance and identifying root causes of anomalies and incidents. It also allows proactive prediction of future issues through historical data analysis. Despite its potential benefits, applying causal discovery algorithms on IT monitoring data poses challenges, due to the complexity of the data. For instance, IT monitoring data often contains misaligned time series, sleeping time series, timestamp errors and missing values. This paper presents case studies on applying causal discovery algorithms to different IT monitoring datasets, highlighting benefits and ongoing challenges.
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢