自动驾驶领域中的行为预测问题的难点在于周围行人、车辆的不确定性和各种规则之外的行为。这些状况难以用规则进行总结,因此最近研发人员们开始利用基于数据驱动的深度学习的方法,以达到更加合理的预测效果。在这方面,来自 Waymo 和谷歌的团队提出了一系列用于自动驾驶行为预测的模型,让无人车理解抽象的道路环境,并实现对车辆、行人的多可能性预测。
在今年 6 月的一篇 CVPR 论文中,这个团队首先提出了一个全新模型 VectorNet。在该模型中,团队首次提出了一种抽象化认识周围环境信息的做法:用向量(vector)来简化地表达地图信息和移动物体,这一做法抛开了传统的用图片渲染的方式,达到了降低数据量、计算量的效果。Waymo 也在其博客文章中明确表示,该技术提高了其行为预测的精准度。
近日,这个团队公布了进一步的工作,提出了 TNT (Target-driveN Trajectory Predictio)。TNT 是一种目的地引导的轨迹预测方法,运用了监督学习的方法对车辆和行人进行多轨迹回归,最终的模型能够输出多个未来轨迹的预测,同时明确指出各个轨迹可能性。论文中介绍,TNT 在公开数据集 Argoverse 的测试表现与冠军结果相当,同时在 INTERACTION、Stanford Drone,以及 Waymo 内部数据集中取得了非常好的效果。
目前该论文已经被国际机器人学习会议 CoRL(Conference on Robot Learning)接收。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢