✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
在机械工程中,结构板的挠度是一个重要的参数,它描述了结构在受到外部载荷作用时的变形情况。对于受到压力载荷作用的结构板,计算其挠度是一个复杂的问题。然而,现代技术的发展使得我们能够利用偏微分方程工具箱 (TM)来解决这个问题。
偏微分方程工具箱 (TM)是一种基于数值计算的软件工具,它能够帮助工程师和科学家解决各种偏微分方程问题。通过将结构板的挠度问题建模为一个偏微分方程,我们可以利用偏微分方程工具箱 (TM)来计算结构板在受到压力载荷作用时的挠度。
首先,我们需要将结构板的几何形状和材料特性输入到偏微分方程工具箱 (TM)中。这些参数包括结构板的长度、宽度、厚度以及材料的弹性模量和泊松比。通过这些输入,我们可以建立一个适当的偏微分方程模型来描述结构板的挠度。
接下来,我们需要考虑结构板所受到的压力载荷。这可以通过输入载荷的大小和分布方式来实现。偏微分方程工具箱 (TM)可以根据这些载荷参数计算出结构板的受力情况,并将其作为偏微分方程模型的边界条件。
一旦我们完成了模型的建立和载荷的输入,偏微分方程工具箱 (TM)可以通过数值计算的方法求解这个偏微分方程模型。这将给出结构板在受到压力载荷作用时的挠度分布。我们可以通过可视化工具来显示这些结果,以便更好地理解结构板的变形情况。
使用偏微分方程工具箱 (TM)计算受压力载荷作用的结构板的挠度有许多优势。首先,它提供了一种准确和可靠的方法来解决这个复杂的问题。其次,偏微分方程工具箱 (TM)具有用户友好的界面,使得工程师和科学家能够轻松地使用它来进行计算。此外,它还可以处理各种不同类型的偏微分方程问题,使其具有广泛的适用性。
然而,使用偏微分方程工具箱 (TM)也存在一些挑战。首先,对于大型和复杂的结构板,计算时间可能会很长。此外,精确的模型参数和边界条件的选择也是一个关键问题,这需要工程师和科学家具备一定的专业知识和经验。
总之,基于偏微分方程工具箱 (TM)计算受压力载荷作用的结构板的挠度是一种强大而有效的方法。它为工程师和科学家提供了解决这个复杂问题的工具,并为他们提供了更深入地理解结构板变形行为的能力。随着技术的不断发展,我们相信偏微分方程工具箱 (TM)将在机械工程领域发挥越来越重要的作用。
⛄ 核心代码
%% Clamped, Square Isotropic Plate With a Uniform Pressure Load
This example shows how to calculate the deflection of a structural
plate acted on by a pressure loading
using the Partial Differential Equation Toolbox(TM).
%% PDE and Boundary Conditions For A Thin Plate
for a thin, isotropic plate with a The partial differential equation
pressure loading is
$$\nabla^2(D\nabla^2 w) = -p$$
where $D$ is the bending stiffness of the plate given by
$$ D = \frac{Eh^3}{12(1 - \nu^2)} $$
$E$ is the modulus of elasticity, $\nu$ is Poisson's ratio, and
and $h$ is the plate thickness. The transverse deflection of the plate
is $w$ and $p$ is the pressure load.
The boundary conditions for the clamped boundaries are $w=0$ and
$w' = 0$ where $w'$ is the derivative of $w$ in a direction
normal to the boundary.
The Partial Differential Equation Toolbox(TM) cannot directly
solve the fourth order plate equation shown above but this can be
converted to the following two second order partial differential
equations.
$$ \nabla^2 w = v $$
$$ D \nabla^2 v = -p $$
where $v$ is a new dependent variable. However, it is not obvious how to
specify boundary conditions for this second order system. We cannot
directly specify boundary conditions for both $w$ and $w'$.
$w'$ to be zero and use the following Instead, we directly prescribe
technique to define $v'$ in such a way to insure that $w$ also equals zero on
"springs" the boundary. Stiff
that apply a transverse shear force to the plate edge are distributed
along the boundary. The shear force along the boundary due to these
$n \cdot D \nabla v = -k w$ where $n$ is the springs can be written
$k$ is the stiffness of the springs. normal to the boundary and
$k$ must be large enough that $w$ is approximately zero The value of
at all points on the boundary but not so large that numerical errors
result because the stiffness matrix is ill-conditioned.
This expression is a generalized Neumann boundary condition supported
by Partial Differential Equation Toolbox(TM)
for an In the Partial Differential Equation Toolbox(TM) definition
$w$ and $v$ dependent variables are u(1) and u(2). elliptic system, the
The two second order partial differential equations can be rewritten as
$$ -\nabla^2 u_1 + u_2 = 0 $$
$$ -D \nabla^2 u_2 = p $$
which is the form supported by the toolbox. The input corresponding to this
in the sections below. formulation is shown
%% Problem Parameters
E = 1.0e6; % modulus of elasticity
nu = .3; % Poisson's ratio
thick = .1; % plate thickness
len = 10.0; % side length for the square plate
hmax = len/20; % mesh size parameter
D = E*thick^3/(12*(1 - nu^2));
pres = 2; % external pressure
%% Geometry and Mesh
For a single square, the geometry and mesh are easily defined
as shown below.
gdmTrans = [3 4 0 len len 0 0 0 len len];
sf = 'S1';
nsmTrans = 'S1';
g = decsg(gdmTrans', sf, nsmTrans');
[p, e, t] = initmesh(g, 'Hmax', hmax);
%% Boundary Conditions
b = @boundaryFileClampedPlate;
type boundaryFileClampedPlate
%% Coefficient Definition
for |assempde| shows the required formats The documentation
for the a and c matrices in the section titled
"PDE Coefficients for System Case". The most convenient form for c
in this example is $n_c = 3N$ from the table where $N$ is the number
$N=2$. of differential equations. In this example
$c$ tensor, in the form of an $N \times N$ matrix of $2 \times 2$ submatrices The
is shown below.
$$
\left[
\begin{array}{cc|cc}
c(1) & c(2) & \cdot & \cdot \\
\cdot & c(3) & \cdot & \cdot \\ \hline
\cdot & \cdot & c(4) & c(5) \\
\cdot & \cdot & \cdot & c(6)
\end{array} \right]
$$
The six-row by one-column c matrix is defined below.
in the full $2 \times 2$ a matrix and the $2 \times 1$ f vector The entries
follow directly from the definition of the
two-equation system shown above.
c = [1; 0; 1; D; 0; D];
a = [0; 0; 1; 0];
f = [0; pres];
%% Finite Element and Analytical Solutions
function and the The solution is calculated using the |assempde|
function. For transverse deflection is plotted using the |pdeplot|
comparison, the transverse deflection at the plate center is also
calculated using an analytical solution to this problem.
u = assempde(b,p,e,t,c,a,f);
numNodes = size(p,2);
pdeplot(p, e, t, 'xydata', u(1:numNodes), 'contour', 'on');
title 'Transverse Deflection'
numNodes = size(p,2);
fprintf('Transverse deflection at plate center(PDE Toolbox)=%12.4e\n', min(u(1:numNodes,1)));
compute analytical solution
wMax = -.0138*pres*len^4/(E*thick^3);
fprintf('Transverse deflection at plate center(analytical)=%12.4e\n', wMax);
displayEndOfDemoMessage(mfilename)
⛄ 运行结果
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 火灾扩散
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢