以下章来源于微信公众号:天眼观视界

编辑:小白学视觉

链接:https://mp.weixin.qq.com/s/ZKb5xdb6FR8YuwLjH3wW7w

本文仅用于学术分享,如有侵权,请联系台作删文处理

导读
计算机视觉中,图像的清晰度直接影响数据集的质量。清晰度也是对图片质量的重要评价指标,本文为读者介绍如何对一张图片的清晰度做出评价以及实现方法,感兴趣读者可以动手操作看看。

图像清晰度是衡量图像质量的一个重要指标,对于相机来说,其一般工作在无参考图像的模式下,所以在拍照时需要进行对焦的控制。对焦不准确,图像就会变得比较模糊不清晰。相机对焦时通过一些清晰度评判指标,控制镜头与CCD的距离,使图像成像清晰。一般对焦时有一个调整的过程,图像从模糊到清晰,再到模糊,确定清晰度峰值,再最终到达最清晰的位置。

常见的图像清晰度评价一般都是基于梯度的方法,本文将介绍五种简单的评价指标,分别是Brenner梯度法、Tenegrad梯度法、laplace梯度法、方差法、能量梯度法。
Brenner梯度法:
计算相差两个单元的两个像素点的灰度差:
FBrenner=∑M∑N(f(x+2,y)−f(x,y))2
式中 (f(x+2,y)−f(x,y))2>Threshold算法准确性取决于阈值的选取。
Tenegrad梯度法:
采用sobel算子分别提取水平和竖直方向的梯度:
FTenegrad=∑M∑N|G(x,y)|
G(x,y)>Threshold
G(x,y)=Gx(x,y)2+Gy(x,y)2
sobel算子模板如下:
Gx=14⎡⎣⎢−1−2−1000121⎤⎦⎥∗I
Gy=14⎡⎣⎢−101−202−101⎤⎦⎥∗I
Laplace梯度法:
laplace梯度函数与Tenegrad基本一致,只需要用Laplace算子替代sobel算子即可:L=16⎡⎣⎢1414204141⎤⎦⎥∗I
方差法:
聚焦清晰的图像比模糊图像有更大的灰度差异,可用方差函数作为评价:Fvariance=∑M∑N(f(x,y)−E2)
式中E为整幅图像的平均灰度值,该函数对噪声敏感。
能量梯度法:
能量梯度函数适合实时评价图像清晰度:
FBrenner=∑M∑N((f(x+1,y)−f(x,y))2+(f(x,y+1)−f(x,y))2)
实例代码:
//方差法
region_to_mean(ImageReduced, Image, ImageMean)
convert_image_type(ImageMean, ImageMean, 'real')
convert_image_type(Image, Image, 'real')
sub_image(Image, ImageMean, ImageSub, 1, 0)
mult_image(ImageSub, ImageSub, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//拉普拉斯梯度函数
laplace(Image, ImageLaplace4, 'signed', 3, 'n_4')
laplace(Image, ImageLaplace8, 'signed', 3, 'n_8')
add_image(ImageLaplace4, ImageLaplace4, ImageResult1, 1, 0)
add_image(ImageLaplace4, ImageResult1, ImageResult1, 1, 0)
add_image(ImageLaplace8, ImageResult1, ImageResult1, 1, 0)
mult_image(ImageResult1, ImageResult1, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//能量梯度函数
crop_part(Image, ImagePart00, 0, 0, Width-1, Height-1)
crop_part(Image, ImagePart01, 0, 1, Width-1, Height-1)
crop_part(Image, ImagePart10, 1, 0, Width-1, Height-1)
convert_image_type(ImagePart00, ImagePart00, 'real')
convert_image_type(ImagePart10, ImagePart10, 'real')
convert_image_type(ImagePart01, ImagePart01, 'real')
sub_image(ImagePart10, ImagePart00, ImageSub1, 1, 0)
mult_image(ImageSub1, ImageSub1, ImageResult1, 1, 0)
sub_image(ImagePart01, ImagePart00, ImageSub2, 1, 0)
mult_image(ImageSub2, ImageSub2, ImageResult2, 1, 0)
add_image(ImageResult1, ImageResult2, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//Brenner梯度法
crop_part(Image, ImagePart00, 0, 0, Width, Height-2)
convert_image_type(ImagePart00, ImagePart00, 'real')
crop_part(Image, ImagePart20, 2, 0, Width, Height-2)
convert_image_type(ImagePart20, ImagePart20, 'real')
sub_image(ImagePart20, ImagePart00, ImageSub, 1, 0)
mult_image(ImageSub, ImageSub, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
//Tenegrad梯度法
sobel_amp(Image, EdgeAmplitude, 'sum_sqrt', 3)
min_max_gray(EdgeAmplitude, EdgeAmplitude, 0, Min, Max, Range)
threshold(EdgeAmplitude, Region1, 20, 255)
region_to_bin(Region1, BinImage, 1, 0, Width, Height)
mult_image(EdgeAmplitude, BinImage, ImageResult4, 1, 0)
mult_image(ImageResult4, ImageResult4, ImageResult, 1, 0)
intensity(ImageResult, ImageResult, Value, Deviation)
结果分析:
处理图像为一组对焦从模糊到清晰再到模糊的标定板图像,如下为其中三幅图像:

中间为最清晰的图像。
采用五种评价函数,对一百多幅图像进行计算,并将结果进行归一化,得到如图所示结果:

一个好的评价函数需要具有单峰性,无偏性,灵敏性,在本实例中,采用Laplace、能量梯度和Brenner梯度法较好,而方差法效果较差,Tenegrad梯度法反向了。

推荐阅读

AIHIA | AI人才创新发展联盟2023年盟友招募

AI融资 | 智能物联网公司阿加犀获得高通5000W融资

Yolov5应用 | 家庭安防告警系统全流程及代码讲解

江大白 | 这些年从0转行AI行业的一些感悟

注意:大白梳理对接AI行业的一些中高端岗位,年薪在50W~120W之间,图像算法、搜索推荐等热门岗位,欢迎感兴趣的小伙伴联系大白,提供全流程交流跟踪,各岗位详情如下:

《AI未来星球》陪伴你在AI行业成长的社群,各项福利重磅开放:

(1)198元《31节课入门人工智能》视频课程;

(2)大白花费近万元购买的各类数据集;

(3)每月自习活动,每月17日星球会员日,各类奖品送不停;

(4)加入《AI未来星球》内部微信群;

还有各类直播时分享的文件、研究报告,一起扫码加入吧!

人工智能行业,研究方向很多,大大小小有几十个方向
为了便于大家学习交流,大白创建了一些不同方向的行业交流群
每个领域,都有各方向的行业实战高手,和大家一起沟通交流。
目前主要开设:Opencv项目方面、目标检测方面模型部署方面,后期根据不同领域高手的加入,建立新的方向群!
大家可以根据自己的兴趣爱好,加入对应的微信群,一起交流学习!
© THE END 


大家一起加油! 

内容中包含的图片若涉及版权问题,请及时与我们联系删除