
自ChatGPT面世以来,以它为代表的闭源 AI 备受关注,简单易用的特性使其占据了行业主导。尽管以LLaMA 为代表的开源 AI 进展迅猛,但业内也流行三个反对开源的观点:开源 AI 无法与行业实验室的优势资源竞争;开源 AI 缺乏安全性;开源 AI 无法进行推理(reasoning)。
本文作者 Varun Shenoy 在 AI 基础设施公司 Baseten 从事机器学习推理工作,他并不认同当前闭源 AI 垄断的发展态势,并一一反驳了上述看法。在他看来,开源 AI 通过微调可用于各种领域各种细分场景和任务;相比推理,上下文长度和内容的真实性更为重要;通过亲自微调,用户能够获得更高的控制权和可见度,因此开源也能够提供隐私和安全性方面的保障。
基于此,随着开源模型日渐成熟,因其用户友好性和可定制性,开源将成为众多应用的最佳选择。
(以下内容经授权后由OneFlow编译发布,转载请联系授权。原文:https://varunshenoy.substack.com/p/why-open-source-ai-will-win)
作者 | Varun Shenoy
OneFlow编译
翻译|宛子琳、杨婷
Linux 具有颠覆性。五年前(1991年),谁曾想过一款世界级操作系统会以如此神奇的方式诞生,它由遍布全球、仅通过脆弱的互联网纽带连接的数千名兼职开发人员的努力构建而成。这完全出乎我的意料。 ——《大教堂与集市》序言,作者Eric Raymond
这些观点看似合理,但我认为,它们缺乏充分的依据。
1 LLM 对业务至关重要
将任务外包是可行的,前提是非关键业务。
2
推理(reasoning)其实并不重要
推理(reasoning)其实并不重要
实际上,开源模型在最具价值的任务上表现十分出色,在产品收集到足够的标记数据后,还可以进行微调,以覆盖可能 99% 的用例。

我们先从上下文长度谈起。语言模型的上下文长度越长,能输入的提示和聊天记录就越长。
原始 Llama 模型的上下文长度为 2k,Llama 2 为 4k。今年早些时候,一位独立的 AI 黑客发现,对 Llama 2 的 RoPE 嵌入进行一行代码修改,就可以直接扩展上下文长度至 8 K,而无需额外训练。

闭源的 AI 模型有一定的过滤机制,使其内容听起来人工感更强,但趣味性也随即降低。仅有130 亿参数的 MythoMax-L2 讲的故事比 Claude 2 或 ChatGPT 好得多。关于事实性,最新的开源 LLM 在检索增强生成方面表现良好,并且它们还会不断改进。
3
控制性至上
控制性至上
接下来简要了解一下图像生成领域。
我认为,Stable Diffusion XL(SDXL)这个最佳开源模型的性能几乎与 Midjourney 持平。

尽管 SDXL 在使用中略显不便,但它的用户可获得数百个社区制作的 LoRA、微调和文本嵌入。用户很快发现 SDXL 在处理手部图像时存在问题,随后的几周时间内,网上就出现了一个修复手部问题的 LoRA。
ControlNet 等其他开源项目在用户构建输出方面为 Stable Diffusion 的用户提供了更强大的助力,而 Midjourney 则不够出色。


LLM 的 logits,即每次迭代的 token-wise 概率质量函数,可用于生成结构化输出。换句话说,你可以保证生成 JSON,而无需进入可能比较昂贵的“验证重试”循环,但如果你使用 OpenAI 的服务,则需要执行此操作。


如果有足够多的测试者和共同开发者,那么就可以快速发现几乎每个问题,并迅速将其解决。 也就是说“如果有足够多的眼睛,那么错误将无处遁形”。

最近一份论文显示,OpenAI 的端点会随时间而发生变动。我们无法确定一个完美运行的提示是否能在一个月后产生相同效果。
采用开源进行 AI 技术的研发可以打造一个广泛的监督和平衡网络。全球的科学家和开发者可以互相评议、批评、研究和理解底层机制,从而提高安全性、可靠性、可解释性和信任度。此外,广泛传播知识可以有效推进技术的发展,同时减轻其被滥用的风险。HuggingFace 就是新的 RedHat。
你只能信任你所拥有和控制的模型,黑盒 API 则与此不同。这表明,反对开源 AI 安全性的论点毫无道理。历史经验表明,开源 AI 实际上更安全。
4
炒作才是问题所在
为何人们近期更偏向于模型闭源?主要有两个原因:简单易用,有知名度。
相较于闭源模型,开源模型更难上手一些。相比使用 OpenAI 的 API,使用开源模型,还需雇佣一个机器学习工程师团队进行开发。这在短期内不可避免,这是掌握控制权和提升创新速度的代价。愿意在前沿领域投入时间的人将有机会构建更优质的产品,其使用体验也将得到不断改进。
更棘手的是,闭源已经占据市场主导地位。
闭源模型供应商已经在这个 AI 炒作周期中占据了主导地位。人们没时间研究开源模型,也没有意识到开源模型的潜力。人们所熟知的为数不多的工具提供商是 OpenAI、Pinecone 和 LangChain。
“OPL”堆栈,来自Wen Yang。
人们常常误认为最出名的工具即为最合适的工具。在当前的大规模炒作下,闭源 AI 备受关注,可谓是人尽皆知。但随着开源模型的日益成熟,因其对用户的友好性和可定制性,将成为许多应用的更优选择。
与其被炒作所席卷,有前瞻性的组织将利用这一时期深入了解自身需求,并为充分利用开源 AI 奠定基础。他们将在开源技术上构建具备竞争优势和差异化的 AI 体验。长期来看,这将为他们带来可持续的竞争优势。
对于那些看穿炒作的实用主义者来说,他们始终聚焦于真正开源 AI 的巨大价值,前景依然光明。
其他人都在看
试用OneFlow: github.com/Oneflow-Inc/oneflow/
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢