导语


目录
1. 人工智能和神经网络的背景知识
1. 人工智能和神经网络的背景知识
1. 人工智能和神经网络的背景知识



2. 计算机辅助数学研究
2. 计算机辅助数学研究
自人工智能诞生以来,探索 AI 在数学研究中的应用一直是一个重要的研究方向,并取得了许多重要成果。在符号主义的影响下,A. Newell 和 H. Simon 研发的“逻辑理论家“证明了《数学原理》中多条定理,这是符号主义的成功实践之一。而符号主义的另一重大成果,则是吴文俊先生开创的几何定理机器证明。吴先生利用代数几何,成功的将平面几何表述成一套精确的形式语句,从而可以借助计算机进行推理,实现平面几何定理的机器证明。
计算机辅助数学研究已经取得了一些令人瞩目的成就。例如,图论里经典的四色定理(任何平面上的地图只需要使用最多四种颜色来进行着色,以确保相邻的地区颜色不同)曾被计算机用穷举法证明。最近5年内,用神经网络辅助数学研究比较重要的工作包括:
符号回归寻找数学表达式:这种方法从数据中寻找精确的数学表达式,不仅仅是拟合数据,而是在给定的函数库内寻找函数,并通过组合和算术运算来生成一个函数,以拟合数据。这种方法已被用于发现物理学和数学中的精确公式。
强化学习构造猜想反例:利用强化学习,研究人员能够构造出猜想的反例,例如在图论中。这种方法可以用于验证某些猜想是否成立,从而发现新的数学性质。
AI 辅助发现数学规律:通过AI辅助,研究人员已经建立了不同数学领域的规律,包括建立扭结不变量、发现新的矩阵乘法算法以及生成关于基本常数的猜想。这些工作突显了AI在数学研究中的重要作用。
2.1 符号回归寻找数学表达式


线性符号回归(Linear SR)的目标表达式有m个组成部分,单个目标表达式就是m=1的情况。每个部分可以表示成一个函数的线性组合,而这些函数来源于事先设定的函数库里。优化的目标是学习每个线性表达式的系数。如果用监督学习的话,就定一个损失函数,然后最小化损失函数。

而非线性符号回归(Nonlinear SR)将深度神经网络中的激活函数替换成数学算子,从数据中学习数学表达式。

因此,符号回归与传统回归方法核心的不同在于,事先给定了函数库,然后在这个函数库里去选取函数进行线性或非线性的组合,再去优化参数。
(2)基于强化学习的符号回归方法:深度符号回归 Brenden K. Petersen, et al. Deep Symbolic Regression:Recovering Mathematical ExpressionsFrom Data Via Risk-Seeking Policy Gradients. ICLR 2021



Wassim Tenachi, et al. Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws. arXiv:2303.03192.



2.2 强化学习构造猜想反例
Adam. Zsolt. Wagner . “Constructions in combinatorics via neural networks”.arXiv:2104.14516.




2.3 AI 辅助发现数学规律
(1)AI 辅助建立扭结不变量间的联系
Davies. Alex, et al. “Advancing mathematics by guiding human intuition with AI. ” Nature 600 (2021): 70-74.


(2)AI发现矩阵乘法新算法
Fawzi. Alhussein, et al. “Discovering faster matrix multiplication algorithms with reinforcement learning”. Nature 610 (2022): 47-53.

图:Strassen's algorithm 示意图,其中图a是三维情形的矩阵乘法的张量表征, ai, bi, ci构成一个size为 (4,4,4) 的三维张量;图b展示了 Strassen’s algorithm 中使用的7个乘法;图c展示了将张量分解为7个秩为1的项的和
(3)AI生成关于基本常数的猜想
Gal Raayoni ,et al. Generating conjectures on fundamental constants with the Ramanujan Machine. Nature , 590 (2021): 67-73.


3. 大语言模型在数学研究中的应用
3. 大语言模型在数学研究中的应用
大语言模型的思维链推理 Jason Wei, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]
Kaiyu Yang et al. LeanDojo: Theorem Proving with Retrieval-Augmented Language Models. arXiv:2306.15626

4. 人机交互的数学研究平台
4. 人机交互的数学研究平台
如何利用语言大模型,构建一个人机交互的数学研究平台?
数学研究大体分为两个过程:发现数学新命题,证明或证否数学命题。基于这两个基本过程,我们认为人机交互的数学研究平台应该包含如下基本组件:语言大模型 + 符号计算+ 符号回归 + 构造反例 + 自动证明。
语言大模型已经逐渐成为人工智能时代的操作系统,也必将在人机交互的数学研究中发挥基础作用。在数学的发展历程中,许多重大猜想都是依赖数学其他分支的工具和思想得以证明的。由于语言大模型广泛的知识储备,数学家可以通过自然语言与计算机进行交互,整合全领域的数学知识,发现新的数学现象,并借助语言大模型的逻辑推理能力,实现数学命题的证明。然而,现阶段语言大模型在数学推理方面的能力仍然有所欠缺。如何搜集更多的专业数据并开发更强大的算法,改进现有语言大模型的数学推理能力是未来急需解决的重要问题。
在以上基本组件中,语言大模型是一个基础设施,其他组件作为插件部署并被调用。数学家可以借助该平台,通过自然语言与计算机进行交互,实现对数学命题更高效的发现,证明或证否。
经过几个月的努力,DeepMath 研究团队近日发布了 DeepMath 数学大模型,并正在构建人机交互的现代数学研究平台。模型已上传到 Huggingface,感兴趣的朋友可以登录 www.deepmath.cn 通过邀请码注册,在线体验实际效果。
DeepMath 大模型的特点:
DeepMath 大模型基于 Llama2 微调,显著提升了大模型在现代数学知识问答的能力。为了验证模型效果,我们在线问了一个拓扑学问题:what is a compact topological space? 得到的答案是:A topological space X is compact if every open cover of X has a finite subcover. 回答相当准确!
而如果使用原始 Llama2,会得到怎样的回复呢? 可以参考如下测试结果的截图:

可以看出,尽管原始 Llama2 的回复比较详尽,但是结果并不准确。我们又测试了分析、代数等学科的问题,发现 DeepMath 大模型的效果都相当不错。那么,我们是怎么训练出这种效果呢?
答案还是在于高质量数据集的构建。我们耗费了数月时间人工标注了几千条现代数学知识问答指令,涵盖了微积分,实分析,复分析,概率论,泛函分析,抽象代数,微分方程,微分几何,拓扑学等多个方向。DeepMath大模型正是基于这个高质量的数据集监督微调而来。
为了增强语言大模型的计算能力,我们将 DeepMath 数学大模型与开源数学软件 Sagemath 结合起来。我们构建了一个 Sagemath 代码数据集,并与现代数学知识问答数据集结合,共同微调训练 Llama2,显著提升了模型使用工具与计算能力。
我们将陆续开发符号回归,构造反例,自动证明等组件,并基于AI智能体的思想,将所有组件有效组织起来,从而达到通过自然语言交互并调度各组件,实现对数学命题更高效的发现,证明或证否。
5. 展望:如何借助 AI 发现新的数学概念?
5. 展望:如何借助 AI 发现新的数学概念?
最后,陈小杨老师提出了几个未来AI和数学结合的发展方向:
数学对象如何向量化?我们讨论了函数表达式和图的向量化方法,但数学里还有很多其他的数学对象,比如代数结构(如群环域)、几何结构(如流形、代数簇),等等。如何将它们向量化还没有引起大家的关注。
怎么用AI发现新的数学概念?
如何将神经网络视为特殊函数,用于解决基础数学问题?
学者简介


人工智能与数学读书会启动
数十年来,人工智能的理论发展和技术实践一直与科学探索相伴而生,尤其在以大模型为代表的人工智能技术应用集中爆发的当下,人工智能正在加速物理、化学、生物等基础科学的革新,而这些学科也在反过来启发人工智能技术创新。在此过程中,数学作为兼具理论属性与工具属性的重要基础学科,与人工智能关系甚密,相辅相成。一方面,人工智能在解决数学领域的诸多工程问题、理论问题乃至圣杯难题上屡创记录。另一方面,数学持续为人工智能构筑理论基石并拓展其未来空间。这两个关键领域的交叉融合,正在揭开下个时代的科学之幕。
为了探索数学与人工智能深度融合的可能性,集智俱乐部联合同济大学特聘研究员陈小杨、清华大学交叉信息学院助理教授袁洋、南洋理工大学副教授夏克林三位老师,共同发起“人工智能与数学”读书会,希望从 AI for Math,Math for AI 两个方面深入探讨人工智能与数学的密切联系。本读书会是“AI+Science”主题读书会的第三季。读书会自9月15日开始,每周五晚20:00-22:00,预计持续时间8~10周。欢迎感兴趣的朋友报名参与!

详情请见:
人工智能与数学读书会启动:AI for Math,Math for AI
AI+Science 读书会

推荐阅读
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢