
导语


分享内容简介
分享内容简介
—— 自由能原理提出者 Karl Friston
 参考链接:https://medium.com/aimonks/deep-learning-is-rubbish-karl-friston-yann-lecun-face-off-at-davos-2024-world-economic-forum-494e82089d22
参考链接:https://medium.com/aimonks/deep-learning-is-rubbish-karl-friston-yann-lecun-face-off-at-davos-2024-world-economic-forum-494e82089d22
内容大纲
内容大纲
牟牧云:自由能原理与强化学习概览介绍
- 自然智能与人工智能:感知和行动的统一性原理? 
- 导向主动推理的两条路径 
- 大脑、生物系统、物理的自由能原理 
- 预测加工理论 
- 强化学习与自由能原理的联系:世界模型与探索 
张德祥:自由能原理——从第一原理推导的庞大智能理论框架
- 自由能原理定义 
- 类生物AGI实现进展简介 
- 基础 
- 自由能原理与相关的各个理论比较 
- 自组织方向 目的 high road 
- ⻉叶斯方向 机制 low road 
- 自由能原理的世界模型层次观 
核心概念
核心概念
- 自由能原理 Free Energy Principle 
- 主动推理 Active inference 
- 强化学习 Reinforcement learning 
- 世界模型 World model 
- 预测加工理论 Predictive processing theory 
主讲人简介
主讲人简介


直播信息
直播信息

参考文献
参考文献
- Parr, Thomas, Giovanni Pezzulo, and Karl J. Friston. Active inference: the free energy principle in mind, brain, and behavior. MIT Press, 2022. 
- Friston, K. The free-energy principle: a unified brain theory?. Nat Rev Neurosci 11, 127–138 (2010). https://doi.org/10.1038/nrn2787 
- Friston, Karl, James Kilner, and Lee Harrison. A free energy principle for the brain. Journal of physiology-Paris 100.1-3 (2006): 70-87. 
- Karl, Friston. A free energy principle for biological systems. Entropy 14.11 (2012): 2100-2121. 
- Friston, Karl. A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184 (2019). 
- Parr, Thomas, and Karl J. Friston. Attention or salience?. Current opinion in psychology 29 (2019): 1-5. 
- Feldman, Harriet, and Karl J. Friston. Attention, uncertainty, and free-energy. Frontiers in human neuroscience 4 (2010): 215. 
- Clark, Andy, Surfing Uncertainty: Prediction, Action, and the Embodied Mind (New York, 2016; online edn, Oxford Academic, 22 Oct. 2015), https://doi.org/10.1093/acprof:oso/9780190217013.001.0001, accessed 19 Dec. 2023. (中译本《预测算法:具身智能如何应对不确定性》,机械工业出版社(2020)) 
- Blakemore, Sarah-J., Chris D. Frith, and Daniel M. Wolpert. Spatio-temporal prediction modulates the perception of self-produced stimuli. Journal of cognitive neuroscience 11.5 (1999): 551-559. 
- Mazzaglia, Pietro, et al. The free energy principle for perception and action: A deep learning perspective. Entropy 24.2 (2022): 301. 
- Hafner D, Lillicrap T, Fischer I, et al. Learning latent dynamics for planning from pixels. ICML 2019 
- 【Dreamer V1】Hafner D, Lillicrap T, Ba J, et al. Dream to control: Learning behaviors by latent imagination[J]. arXiv preprint arXiv:1912.01603, 2019. 
- 【Dreamer V2】Hafner D, Lillicrap T, Norouzi M, et al. Mastering atari with discrete world models[J]. arXiv preprint arXiv:2010.02193, 2020. 
- 【Dreamer V3】Hafner D, Pasukonis J, Ba J, et al. Mastering diverse domains through world models[J]. arXiv preprint arXiv:2301.04104, 2023. 
- Hao J, Yang T, Tang H, et al. Exploration in deep reinforcement learning: From single-agent to multiagent domain. IEEE Transactions on Neural Networks and Learning Systems, 2023. 
- Sekar R, Rybkin O, Daniilidis K, et al. Planning to explore via self-supervised world models. ICML 2020 
- Saxena V, Ba J, Hafner D. Clockwork variational autoencoders. NIPS 2021, 34: 29246-29257. 
读书会阅读材料较多,为了更好地阅读体验,可扫描下方二维码进入集智斑图页面,阅读并收藏感兴趣的论文。 
https://pattern.swarma.org/article/289 
Parr, Thomas, Giovanni Pezzulo, and Karl J. Friston. Active inference: the free energy principle in mind, brain, and behavior. MIT Press, 2022.
Friston, K. The free-energy principle: a unified brain theory?. Nat Rev Neurosci 11, 127–138 (2010). https://doi.org/10.1038/nrn2787
Friston, Karl, James Kilner, and Lee Harrison. A free energy principle for the brain. Journal of physiology-Paris 100.1-3 (2006): 70-87.
Karl, Friston. A free energy principle for biological systems. Entropy 14.11 (2012): 2100-2121.
Friston, Karl. A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184 (2019).
Parr, Thomas, and Karl J. Friston. Attention or salience?. Current opinion in psychology 29 (2019): 1-5.
Feldman, Harriet, and Karl J. Friston. Attention, uncertainty, and free-energy. Frontiers in human neuroscience 4 (2010): 215.
Clark, Andy, Surfing Uncertainty: Prediction, Action, and the Embodied Mind (New York, 2016; online edn, Oxford Academic, 22 Oct. 2015), https://doi.org/10.1093/acprof:oso/9780190217013.001.0001, accessed 19 Dec. 2023. (中译本《预测算法:具身智能如何应对不确定性》,机械工业出版社(2020))
Blakemore, Sarah-J., Chris D. Frith, and Daniel M. Wolpert. Spatio-temporal prediction modulates the perception of self-produced stimuli. Journal of cognitive neuroscience 11.5 (1999): 551-559.
Mazzaglia, Pietro, et al. The free energy principle for perception and action: A deep learning perspective. Entropy 24.2 (2022): 301.
Hafner D, Lillicrap T, Fischer I, et al. Learning latent dynamics for planning from pixels. ICML 2019
【Dreamer V1】Hafner D, Lillicrap T, Ba J, et al. Dream to control: Learning behaviors by latent imagination[J]. arXiv preprint arXiv:1912.01603, 2019.
【Dreamer V2】Hafner D, Lillicrap T, Norouzi M, et al. Mastering atari with discrete world models[J]. arXiv preprint arXiv:2010.02193, 2020.
【Dreamer V3】Hafner D, Pasukonis J, Ba J, et al. Mastering diverse domains through world models[J]. arXiv preprint arXiv:2301.04104, 2023.
Hao J, Yang T, Tang H, et al. Exploration in deep reinforcement learning: From single-agent to multiagent domain. IEEE Transactions on Neural Networks and Learning Systems, 2023.
Sekar R, Rybkin O, Daniilidis K, et al. Planning to explore via self-supervised world models. ICML 2020
Saxena V, Ba J, Hafner D. Clockwork variational autoencoders. NIPS 2021, 34: 29246-29257.

推荐阅读
自由能原理与强化学习读书会招募中

点击“阅读原文”,报名读书会
内容中包含的图片若涉及版权问题,请及时与我们联系删除


评论
沙发等你来抢