社区中有两个流行的
本文重点介绍了 Accelerate 对外暴露的这两个后端之间的差异。为了让用户能够在这两个后端之间无缝切换,我们在 Accelerate 中合并了
零冗余优化器 (Zero Redundancy Optimizer,ZeRO) https://arxiv.org/abs/1910.02054 DeepSpeed https://github.com/microsoft/DeepSpeed PyTorch https://pytorch.org/docs/stable/fsdp.html Accelerate https://hf.co/docs/accelerate/en/index 一个精度相关的 PR https://github.com/huggingface/accelerate/issues/2624 一个新的概念指南 https://hf.co/docs/accelerate/concept_guides/fsdp_and_deepspeed
最近,我们尝试分别使用 DeepSpeed 和 PyTorch FSDP 进行训练,发现两者表现有所不同。我们使用的是 Mistral-7B 基础模型,并以半精度 (bfloat16
) 加载。可以看到 DeepSpeed (蓝色) 损失函数收敛良好,但 FSDP (橙色) 损失函数没有收敛,如图 1 所示。

我们猜想可能需要根据 GPU 数量对学习率进行缩放,且由于我们使用了 4 个 GPU,于是我们将学习率提高了 4 倍。然后,损失表现如图 2 所示。

看起来,通过按 GPU 数量缩放 FSDP 学习率,已经达到了预期!然而,当我们在不进行缩放的情况下尝试其他学习率 (1e-5
) 时,我们却又观察到这两个框架的损失和梯度范数特征又是趋近一致的,如图 3 所示。

在 DeepSpeed
代码库的 DeepSpeedZeroOptimizer_Stage3
(顾名思义,处理第 3 阶段优化器分片) 实现代码中,我们注意到 trainable_param_groups
(可训参数组) 被传入一个内部函数 _setup_for_real_optimizer
,该函数会调用另一个名为 _create_fp32_partitions
的函数。正如其名称中的 fp32
所示,DeepSpeed
内部执行了精度上转,并在设计上始终将主权重保持为 fp32
精度。而上转至全精度意味着:同一个学习率,上转后的优化器可以收敛,而原始低精度下的优化器则可能不会收敛。前述现象就是这种精度差异的产物。
在 FSDP 中,在把模型和优化器参数分片到各 GPU 上之前,这些参数首先会被“展平”为一维张量。FSDP 和 DeepSpeed 对这些“展平”参数使用了不同的 dtype
,这会影响 PyTorch 优化器的表现。表 1 概述了两个框架各自的处理流程,“本地?”列说明了当前步骤是否是由各 GPU 本地执行的,如果是这样的话,那么上转的内存开销就可以分摊到各个 GPU。
流程 | 本地? | 框架 | 详情 |
---|---|---|---|
模型加载 (如 AutoModel.from_pretrained(..., torch_dtype=torch_dtype) ) | ❌ | ||
准备,如创建“展平参数” | ✅ | FSDP DeepSpeed | 使用 torch_dtype 不管 torch_dtype ,直接创建为 float32 |
优化器初始化 | ✅ | FSDP DeepSpeed | 用 torch_dtype 创建参数用 float32 创建参数 |
训练步 (前向、后向、归约) | ❌ | FSDP DeepSpeed | 遵循 遵循 deepspeed_config_file 中的混合精度设置 |
优化器 (准备阶段) | ✅ | FSDP DeepSpeed | 按需上转至 torch_dtype 所有均上转至 float32 |
优化器 (实际执行阶段) | ✅ | FSDP DeepSpeed | 以 torch_dtype 精度进行以 float32 精度进行 |
fsdp.MixedPrecision https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision
几个要点:
正如 🤗 Accelerate 上的 这一问题 所述,混合精度训练的经验法则是将可训参数精度保持为float32
。当在大量 GPU 上进行分片时,上转 (如 DeepSpeed
中所做的那样) 对内存消耗的影响可能可以忽略不计。然而,当在少量 GPU 上使用DeepSpeed
时,内存消耗会显著增加,高达 2 倍。FSDP 的 PyTorch 原生实现不会强制上转,其支持用户以低精度操作 PyTorch 优化器,因此相比 DeepSpeed
提供了更大的灵活性。
这一问题 https://github.com/huggingface/accelerate/issues/2624#issuecomment-2058402753
为了在🤗 Accelerate 中更好地对齐 DeepSpeed 和 FSDP 的行为,我们可以在启用混合精度时自动对 FSDP 执行上转。我们为此做了一个 PR,该 PR 现已包含在
0.30.0 版本 https://github.com/huggingface/accelerate/releases/tag/v0.30.0

有了这个 PR,FSDP 就能以两种模式运行:
与 DeepSpeed 一致的 混合精度
模式针对内存受限场景的低精度模式,如图 4 所示。
表 2 总结了两种新的 FSDP 模式,并与 DeepSpeed 进行了比较。
框架 | 模型加载 (torch_dtype ) | 混合精度 | 准备 (本地) | 训练 | 优化器 (本地) |
---|---|---|---|---|---|
FSDP (低精度模式) | bf16 | 缺省 (无) | bf16 | bf16 | bf16 |
FSDP (混合精度模式) | bf16 | bf16 | fp32 | bf16 | fp32 |
DeepSpeed | bf16 | bf16 | fp32 | bf16 | fp32 |
我们使用
IBM Granite 7B https://hf.co/ibm-granite/granite-7b-base
如上文,我们使用 4 张 A100 GPU,超参如下:
batch size 为 8 模型加载为 torch.bfloat16
使用 torch.bfloat16
混合精度
表 3 表明 FSDP 和 DeepSpeed 的表现类似,这与我们的预期相符。
InstructLab https://github.com/instructlab GLAN https://arxiv.org/abs/2402.13064
框架 | 每 GPU 每秒词元数 | **每步耗时 (s) ** | **浮点算力利用率 (MFU) ** |
---|---|---|---|
FSDP (混合精度模式) | 3158.7 | 10.4 | 0.41 |
DeepSpeed | 3094.5 | 10.6 | 0.40 |
我们提供了新的
如何实现等效的分片策略? 如何进行高效的模型加载? FSDP 和 DeepSpeed 中如何管理权重预取? 与 DeepSpeed 对等的 FSDP 封装是什么?
我们在 🤗 Accelerate 中考虑了配置这些框架的各种方式:
使用 accelerate launch
从命令行配置从🤗 Accelerate 提供给 DeepSpeed https://hf.co/docs/accelerate/main/en/package_reference/deepspeed 和FSDP https://hf.co/docs/accelerate/main/en/package_reference/fsdp 的各种Plugin
类中配置
🤗 Accelerate 使得在 FSDP 和 DeepSpeed 之间切换非常丝滑,大部分工作都只涉及更改 Accelerate 配置文件 (有关这方面的说明,请参阅新的概念指南) 。
除了配置变更之外,还有一些如检查点处理方式的差异等,我们一并在指南中进行了说明。
本文中的所有实验都可以使用
概念指南 https://hf.co/docs/accelerate/v0.31.0/en/concept_guides/fsdp_and_deepspeed 原始 🤗 Accelerate 问题 https://github.com/huggingface/accelerate/issues/2624
我们计划后续在更大规模 GPU 上进行吞吐量比较,并对各种不同技术进行比较,以在保持模型质量的前提下更好地利用更多的 GPU 进行微调和对齐。
本工作凝聚了来自多个组织的多个团队的共同努力。始于 IBM 研究中心,特别是发现该问题的 Aldo Pareja 和发现精度差距并解决该问题的 Fabian Lim。Zach Mueller 和
Stas Bekman https://github.com/stas00 DeepSpeed https://www.deepspeed.ai/
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢