本文介绍常识问答任务,主要关注融合外部知识的常识问答模型。首先介绍几个常识问答的基准评测数据集,然后总结了一些在常识推理中常用的结构化和非结构化知识库,最后根据知识的融合方式介绍了三类融合外部知识的常识问答模型:使用预训练融合常识知识、使用关系网络融合常识知识和使用图神经网络融合外部知识。

当人类回答一个问题时,我们经常会不自觉地利用关于空间关系、因果关系、科学事实和社会习俗等常识和背景知识。例如,如果问“当李明听到割草机的声音时,他最有可能位于哪里?”,我们可以推断出割草机离李明很近,李明很有可能在街道旁行走。这种类型的知识对人类来说似乎微不足道,但是这超出了当前的自然语言理解(NLU)系统的能力范围。为了让机器也具有常识推理能力,很多学者在解决需要常识的问答任务时都引入了外部知识,既期望模型能够利用外部知识作出正确的判断,也期望模型能够给出使用到的显式的、可解释的证据。引入的外部知识可以是结构化的知识图谱(如ConceptNet),也可以是非结构化的文本语料(如Wikipedia)。接下来作者将分为三部分,首先介绍几个常识问答数据集评测基准,然后介绍在常识推理中常用的结构化和非结构化知识库,最后根据知识融合的方式介绍近几年提出的融合外部知识的常识问答模型。

感兴趣的可以戳原文继续阅读完整内容。

内容中包含的图片若涉及版权问题,请及时与我们联系删除