在大数据和算力的助力下,深度学习掀起了一波浪潮,在许多领域取得了显著的成绩。以监督学习为主的深度学习方法,往往期望能够拥有大量的标注样本进行训练,模型能够学到更多有价值的知识。然而,实际应用场景的标注样本严重稀缺。并且,标注大量样本将产生昂贵的标注成本。

在庞大而复杂的淘系电商场景中,类似的需求比比皆是:例如,咸鱼&躺平和洋淘等社区内容的治理,拍立淘的以图搜图,服饰分类(例如,iFashion)等场景都存在标注样本严重稀缺的问题。综上,在实际应用场景中,如何“在模型达到目标性能的前提下,尽可能地减少标注成本”是一项亟需解决的挑战。

主动学习作为机器学习的一个子领域,旨在以尽可能少的标注样本达到模型的目标性能,广泛应用于实际需求中。本文的定位是主动学习方法的入门篇,主要介绍的内容包括:1)详细地介绍主动学习的基础知识;2)简要地介绍主动学习在学术界的研究现状;3)主动学习实践部分将简单介绍几个图像分类的案例;4)文末将给出本文的参考文献和相关资料。

感兴趣的可以戳链接。

内容中包含的图片若涉及版权问题,请及时与我们联系删除