近日,图灵奖得主、“贝叶斯网络之父”Judea Pearl在Twitter上分享了一篇新论文“What are the most important statistical ideas of the past 50 years?”(过去50年中最重要的统计思想是什么?)

这篇论文由哥伦比亚大学统计学教授Andrew Gelman和阿尔托大学计算机科学系副教授Aki Vehtari所著,他们根据自己的研究和文献阅读经验总结出了过去半个世纪以来最重要的8个统计思想,并表示:“它们是独立的概念,涵盖了统计方面不同的发展。这些思想都在1970年前的理论统计文献和各个应用领域的实践中就已经出现。但是在过去的五十年中,它们各自已经发展到足以成为新事物的程度。”

他们认为,过去半个世纪中最重要的统计思想是:反事实因果推理,基于bootstrapping(自助抽样法)和基于模拟的推理,超参数化模型和正则化,多层模型,泛型计算算法(generic computation algorithms),自适应决策分析,鲁棒推理和探索性数据分析(未按时间顺序,排序不分先后)。

在这篇论文中,他们将讨论这些思想的共同特征、它们与现代计算和大数据的关系以及在未来几十年中如何发展。“本文的目的是引起有关统计和数据科学研究更大主题的思考和讨论。”

值得一提的是,Judea Pearl在推文中表示,“对作者将因果推理列入其中感到欣慰,这与Stigler在《统计学七支柱》中的总结截然不同,后者完全没有提到因果推理。”另外,他也对大学统计专业很少安排因果推理课程感到担忧,“统计学可以期待复兴或改革吗?不幸的是,统计系中提供因果推理课程的非常少,更不用提教'The First Law'的,简直是无穷少。”

论文:What are the most important statistical ideas of the past 50 years? 论文地址:https://arxiv.org/pdf/2012.00174.pdf

作者简介: Andrew Gelman,美国统计学家,哥伦比亚大学统计学和政治学教授。他1986年获得麻省理工学院数学和物理学博士学位。随后,他获得了博士学位。在哈佛大学统计学荣誉退休教授Donald Rubin的指导下,于1990年从哈佛大学获得统计学博士学位。他是美国统计协会与数理统计学会的院士,曾三度获得美国统计协会颁发的“杰出统计应用奖”,谷歌学术显示,他的论文总引用量超过12万,h-index为110。

Aki Vehtari,阿尔托大学计算机科学系副教授,主要研究领域为贝叶斯概率理论和方法、贝叶斯工作流、概率编程、推理方法(例如Laplace,EP,VB,MC)、推理和模型诊断、模型评估和选择、高斯过程以及分层模型。谷歌学术显示,他的论文总引用量近4万。他和Andrew Gelman都是《贝叶斯数据分析》的作者,这本书因在数据分析、研究解决难题方面的可读性、实用性而广受读者好评,被认为是贝叶斯方法领域的优秀之作。

阅读论文的全文编译版,点击下面的“阅读原文”链接。

内容中包含的图片若涉及版权问题,请及时与我们联系删除