机器学习系统设计的概念是指,为了满足特定要求,针对机器学习系统对软件体系架构、基础架构、算法和数据进行定义的过程。虽然现有的系统也可以满足大部分模型搭建的需求,但我们必须承认:首先,工具空间是不断革新的;其次,业务需求是不断变化的;最后,数据分布也是持续更替的。因此,「系统」是很容易过时的。如果不能及时更新,那么出错、崩溃都是可以预料的。这也是本门课程开设的初衷。

本门课程旨在为现实中的机器学习系统提供一个迭代框架,该框架的目标是构建一个可部署、可信赖、可扩展的系统。首先要考虑的是每个 ML 项目的利益相关者及目标,不同的目标则需要不同的设计选择,且要考虑如何权衡。

课程涵盖了从项目界定、数据管理、模型开发、部署、基础架构、团队架构到业务分析的所有步骤,在每个步骤中,都会探讨不同解决方案的动机、挑战和局限性。在课程的最后一部分,将会探讨机器学习生产生态系统的未来。学生们还将学习关于隐私、公平、安全方面的知识。

课程讲师 Chip Huyen 来自越南,是一位作家和计算机科学家,本科和硕士均就读于斯坦福大学计算机科学专业,此前曾在英伟达、Netflix 等公司工作。Chip Huyen 开设过一些受欢迎的课程,比如《TensorFlow for Deep Learning Research》,在 GitHub 平台也有很多热门项目。

课程主页:https://stanford-cs329s.github.io/ Chip Huyen 主页:https://github.com/chiphuyen

内容中包含的图片若涉及版权问题,请及时与我们联系删除