本教程将由四个主要部分组成,每个部分由一名讲者负责,然后是一个讨论环节。我们将从介绍常识的公理化理论开始。接下来,我们将讨论跨异构常识源协调节点和关系的工作,以及这种整合对下游推理任务的影响。第三,我们将讨论如何从文本中自动提取常识知识,以及定量和定性语境化。然后,我们将讨论大型模型(如BERT、GPT-2和T5)如何学习隐式地表示通过阅读Web获得的大量常识知识。另外,如何通过精心设计的语言提示或对知识图谱元组进行微调来提取这些知识。我们将以对未来方法的讨论来结束本教程,并提出在下一代常识推理技术中结合语言模型、知识图谱和公理化。一些机器学习和语言建模的知识会有帮助,但不是强制性的: 我们将介绍相关的机器学习概念,以便每个人都有机会跟随。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢