近年来出现的 AutoML 算法可以帮助研究者自动找出合适的神经网络,无需手动试验。神经架构搜索 (NAS) 等技术利用强化学习、进化算法和组合搜索等算法,基于给定搜索空间构建神经网络。在恰当的设置下,这些技术找到的神经网络架构优于手动设计的网络架构。不过,这些算法计算量较大,在收敛前需要训练数千个模型。而且,它们探索的搜索空间是域特定的,包括大量先验人类知识,无法很好地实现跨域迁移。例如,在图像分类领域中,传统 NAS 技术搜索两个不错的构造块(卷积和下采样),然后遵循惯例创建完整的网络。

为了克服这些缺陷,并将 AutoML 解决方案扩展到更广泛的研究社区,最近谷歌开源了一个自动、高效构建最优ML模型的平台 Model Search。该平台不针对某个特定域,因而足够灵活,并且能够找出最适合给定数据集和问题的架构,同时最小化编程时间和计算资源。该平台基于 TensorFlow 框架构建,既可以单机运行,也可以在分布式机器设置上运行。

GitHub 地址:https://github.com/google/model_search

来源:机器之心

内容中包含的图片若涉及版权问题,请及时与我们联系删除