自2012年AlexNet在ImageNet比赛上获得冠军,卷积神经网络逐渐取代传统算法成为了处理计算机视觉任务的核心。

在这几年,研究人员从提升特征提取能力,改进回传梯度更新效果,缩短训练时间,可视化内部结构,减少网络参数量,模型轻量化, 自动设计网络结构等这些方面,对卷积神经网络的结构有了较大的改进,逐渐研究出了AlexNet、ZFNet、VGG、NIN、GoogLeNet和Inception系列、ResNet、WRN和DenseNet等一系列经典模型,MobileNet系列、ShuffleNet系列、SqueezeNet和Xception等轻量化模型。

在本文将对这些经典模型的结构设计演变做一个总结,旨在让读者了解一些结构的设计原理,产生效果的原因。在面对一个具体任务时能够准确地选择一个合理的特征提取网络,而不是随便选择一个。在自主设计网络时,也能根据总结的原则和经验设计出合理的结构,避免随心设计。

感兴趣的可以戳文章。

内容中包含的图片若涉及版权问题,请及时与我们联系删除