机器学习领域研究者大多熟悉 PapersWithCode,这个资源网站上托管着 4 万多个研究的实现代码,但它没有进一步解决「有代码也复现不了」的问题。这个问题或许可以在「Papers Without Code」上找到答案。

简单来说,在 Papers Without Code 上,研究者可以提交无法复现的机器学习论文以及他们的工作细节,例如他们花费了多少时间来复现结果。如果提交内容有效,则 Papers Without Code 方面将与该论文原作者联系,并要求其澄清或公布实现细节。论文成功复现后,可以在 PapersWithCode 或 GitHub 上发布,供其他研究人员参考。如果作者未及时答复,该论文将被添加到「不可复现的机器学习论文列表」中,公开处刑。

如果某篇论文「光荣上榜」,论文作者会被第一时间告知,并有机会作出回应。这一机制的建立也是希望能够促进机器学习社区之间的有效交流,并培养健康的研究生态。

网站地址:https://www.paperswithoutcode.com/

内容中包含的图片若涉及版权问题,请及时与我们联系删除