面对庞大的患者数量,为所有的图像逐一撰写报告占据了医生大量工作时间。不同医生的经验差异也使得部分图像中的异常被忽略,无法体现在报告中。如何借助人工智能快速、准确地自动生成报告,对于提升医生工作效率和服务质量具有重要的实用价值,也成为了近年来医学图像研究领域中的一个重要课题。
然而,先进的医学图像报告自动生成系统也很容易受到医学图像报告中的数据偏差误导。本次腾讯医典 AI 入选的论文《Exploring and Distilling Posterior and Prior Knowledge for Medical Report Generation》,创新地提出了后验-先验知识探索及蒸馏(PPKED)框架,模拟人类医生的判读方式,结合先验和后验知识来生成报告,以提高最终生成的医学报告质量,针对性弥补了这一不足。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢