东京大学工业科学研究所的两名科学家展示了自适应免疫系统如何使用类似于强化学习的方法来控制免疫反应以重复感染。这项工作将有助于我们对自适应免疫作为一种学习系统的理解,可以显著改善疫苗的研发工作和感染的治疗方案。
这项研究成果于3月9日以「将自适应免疫系统理解为强化学习」(Understanding Adaptive Immune System as Reinforcement Learning)为题发表在《物理评论研究》(Physical Review Research)杂志上。
人体的适应性免疫系统通过记住过去的感染来抵抗各种病原体,该系统通过编排不同免疫细胞的种群和反应不断适应入侵的病原体,进而在再次进入时可以快速响应,对病原体进行清除。
这个复杂的过程取决于许多细胞类型的合作,其中辅助T(Th)细胞在免疫过程中扮演中间:通过增生扩散来激活产生直接免疫反应的其它类型免疫细胞。尽管已经对免疫系统进行了数十年的研究,但Th细胞对不同信号响应的「算法」仍是未知。
现在,东京大学的研究人员将自适应免疫过程过程表述为使用马尔可夫决策过程(MDP)描述的强化学习(RL)问题,呈递的抗原是输入,反应性效应免疫细胞是输出,Th细胞则作为输入和输出之间的隐藏层。
论文的第一作者Takuya Kato表示:「就像可以在强化学习中训练神经网络一样,我们相信免疫网络可以反映抗原模式与对病原体的有效反应之间的关联。」
该团队使用MDP对强化学习中的感染状态进行表示。通过对每种病原体分配几种不同的状态,可以代表感染的不同阶段,它们之间的过渡取决于免疫系统的作用,使模型可以有效地用于分析更复杂的慢性感染。
研究人员表示,他们会继续对模型进行不断完善,使其能够囊括更多的效应细胞。「这种分层体系结构类似于用于优化的模因算法,关于它的研究可能会加强对先天免疫与适应性免疫之间的相互关系的理解。」
论文的合著者Tetsuya Kobayashi认为:「我们的理论框架可能会完全改变对自适应免疫作为一种真正的学习系统的理解。」这项研究可以揭示其他复杂的适应性系统,同时可以优化疫苗从而引发更强免疫反应的方法。 论文链接 参考内容
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢