推荐系统作为深度学习御三家(CV, NLP, RS)之一,一直都是学术界和工业界的热门研究topic。为了更加清楚的掌握推荐系统的前沿方向与最新进展,本文整理了最近一年顶会中推荐系统相关的论文,一共涵盖SIGIR2020, KDD2020, RecSys2020, CIKM2020, AAAI2021, WSDM2021, WWW2021七个会议共221篇论文。本次整理以long paper和research paper为主,也包含少量的short paper和industry paper。
本文按照个人阅读习惯和文章的侧重点将这些论文分为以下五大类和若干小类:
1 推荐任务
Collaborative Filtering
Sequential/Session-based Recommendations
Knowledge-aware Recommendations
Feature Interactions
Conversational Recommender System
Social Recommendations
News Recommendations
Text-aware Recommendations
Point-of-Interest
Online Recommendations
Group Recommendations
Multi-task/Multi-behavior/Cross-domain Recommendations
Other Task
2 推荐的热门研究话题
Debias in Recommender System
Fairness in Recommender System
Attack in Recommender System
Explanation in Recommender System
Long-tail/Cold-start in Recommender System
Evaluation
3 先进技术在推荐中的应用
Pre-training in Recommender System
Reinforcement Learning in Recommender System
Knowledge Distillation in Recommender System
NAS in Recommender System
Federated Learning in Recommender System
4 理论/实验分析
5 其他
GitHub地址:https://github.com/RUCAIBox/Awesome-RSPapers
了解详细内容可以戳原文。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢