谷歌在EfficientNet的基础上,引入了Fused-MBConv到搜索空间中;同时为渐进式学习引入了自适应正则强度调整机制,组合得到了EfficientNetV2,它在多个基准数据集上取得了SOTA性能,且训练速度更快。

本文是谷歌的MingxingTan与Quov V.Le对EfficientNet的一次升级,旨在保持参数量高效利用的同时尽可能提升训练速度。在EfficientNet的基础上,引入了Fused-MBConv到搜索空间中;同时为渐进式学习引入了自适应正则强度调整机制。两种改进的组合得到了本文的EfficientNetV2,它在多个基准数据集上取得了SOTA性能,且训练速度更快。比如EfficientNetV2取得了87.3%的top1精度且训练速度快5-11倍。

感兴趣的可以继续戳原文。

来源:极市平台

内容中包含的图片若涉及版权问题,请及时与我们联系删除