不少人对强化学习的印象还停留在打游戏。比如,著名的「阿尔法狗」、Deepmind与OpenAI发布足以击败人类顶级玩家的《星际争霸》和《魔兽争霸2》游戏系统。

事实上,强化学习系统正从研究实验室过渡到影响力更大的实际应用程序。强化学习可以学习最佳策略以控制大型复杂系统,例如制造工厂,交通控制系统(道路/火车/飞机),金融资产,机器人等。像Wayve 和Waymo这样的自动驾驶汽车公司正使用强化学习来开发汽车控制系统。

我们已经看到了技术环境变化有多快。几年前,深度学习进入商业领域。如今,30%的高科技和电信公司、以及16%的其他行业的公司都有嵌入式深度学习能力。当高管们理解到强化学习的潜力后,许多组织都会走上类似新西兰酋长队的道路——首先,实现更传统的技术来解决问题,然后,应用强化学习将性能提升到以前无法达到的层次。 强化学习的应用场景 本文从以下五个方面进行论述: (一)卫冕冠军与AI「水手; (二)强化学习走出实验室; (三)强化学习的三类应用场景; (四)走向广泛部署; (五)开启「自上而下」的强化学习模式。

内容中包含的图片若涉及版权问题,请及时与我们联系删除