传统上,深度学习算法设计和部署平台的开发是相对独立的。算法设计科学家往往侧重于模型精度,而模型运行效率则是通过在设计中加入计算量的限制来进行保证。
但近日,微软亚洲研究院异构计算组的研究员们在一篇题为“To Bridge Neural Network Design and Real-World Performance: A Behavior Study for Neural Networks”的论文中提出:仅仅用计算量来限制并不能保证实际部署的运行效率。
论文链接:点此
研究员们表示,一个典型的例子是 MobileNetV3 相较于 MobileNetV2 具有更少的计算量和更低的内存使用,因此在 ARM A76 CPU + TFLite 推理时,V3 比 V2 快25%;但出乎意料的是在 Intel Movidius VPU + OpenVINO 推理时,V3 却比 V2 慢75%。
目前,此篇论文已经被 MLSys 2021 (Conference on Machine Learning and Systems)大会收录,其主要研究内容是通过分析深度学习算法设计空间在移动端侧推理平台的行为特性,以设计针对不同平台的高效深度学习模型。
换句话说,研究员们在论文中指出,当前仅仅用计算或访存量作为高效模型设计的指标是不合理的。每个部署框架都有不同的特性,高效算法设计必须考虑目标平台的特性,才能取得最好的性能。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢