联邦学习(Federated learning)可通过中央服务器,在保证数据隐私性的前提下,使用分散在各地的数据,训练机器学习/深度学习模型。从而在遵守隐私保护法律的前提下,通过协作建模,提升机器学习的效率。其在智能零售、金融、自动驾驶等领域已有广泛应用。最近一篇综述文章概述了联邦学习的基本概念及其在生物医学领域的应用场景,本文是对该综述的简介。

感兴趣的可以继续戳原文。

内容中包含的图片若涉及版权问题,请及时与我们联系删除