机器学习的模式是通过大量的数据喂给一个模型,模型会根据数据不断调整自身参数,最终具备判别这些数据的模式或特征的能力。若模型无法从这些数据中训练出一个很好的效果,则认为它是欠拟合。若模型在训练的时候达到很好的效果,而在未参与训练的数据上测试,效果不好,则认为它是过拟合。
在本文,将介绍欠拟合与过拟合的概念、特点、产生的原因、解决的方法。在认真阅读本文后,读者将会对欠拟合与过拟合有个全面的认识。
感兴趣的可以继续戳原文。

内容中包含的图片若涉及版权问题,请及时与我们联系删除