昨日,NLP 领域国际顶会 ACL 2021 公布获奖论文信息:来自字节跳动火山翻译的一篇神经机器翻译工作被评为最佳论文。此外,最佳主题论文、杰出论文也揭晓。
ACL,是计算语言学和自然语言处理领域的顶级国际会议,由国际计算语言学协会组织,每年举办一次。
一直以来,ACL 在 NLP 领域的学术影响力都位列第一,它也是 CCF-A 类推荐会议。

今年的 ACL 大会已是第 59 届,计划于 8 月 1-6 日在泰国曼谷举行。
不久之前,ACL 2021 官方发布了关于本届大会接收结果:本届 ACL 共计收到 3350 篇论文投稿,最终有 21.3% 的论文录用到主会(Main Conference),并额外接收了 14.9% 的论文到 Findings 子刊,综合录用率为 36.2%。我们可以从被接收的论文作者与机构中发现,有大量的国内论文被接收。
除了接收论文之外,今年的 ACL 的组织成员里面也有大量的华人面孔,特别是今年的年会主席是中科院自动化研究所的宗成庆老师,程序主席包括华盛顿大学的 Fei Xia 教授、香港理工大学 Wenjie Li 教授。
昨天,大家最为关注的 ACL 2021 获奖论文公布,令人惊喜的是这些获奖论文里面也包含多篇国内研究成果:如来自字节跳动火山翻译的机器翻译研究获得最佳论文,来自港中文、腾讯 AI Lab 合作的论文也入选杰出论文。
ACL 2021 的最佳论文来自字节跳动火山翻译团队,该研究提出了一种新的词表学习方案 VOLT,在多种翻译任务上取得了优秀的结果。

-
标题:Vocabulary Learning via Optimal Transport for Neural Machine Translation
-
作者:许晶晶、周浩、甘纯、郑在翔、李磊
-
论文地址:https://arxiv.org/pdf/2012.15671.pdf
-
代码地址:https://github.com/Jingjing-NLP/VOLT
对于从业者来说,大家无时无刻不在使用词表对语言进行向量化表示。在深度学习时代,词表构建基本上是所有自然语言处理任务的第一步工作。尽管现今也有了一些比较通用的词表处理方法,但是仍然没有办法回答最基础的问题:什么是最优词表,如何生成最优词表?
为了回答该问题,本论文尝试提出一种无需训练的词表评价指标和针对该评价指标的词表学习方案 VOLT。该方案在常用的英德翻译、英法翻译、低资源翻译、多语言翻译上都取得了相比传统词表解决方案更好的结果。
今年的最佳主题论文(Best theme paper)研究来自卡耐基梅隆大学、巴伊兰大学、加劳德特大学与艾伦人工智能研究所等机构。第一作者殷绮妤(Kayo Yin)本科毕业于巴黎综合理工学院,目前是卡耐基梅隆大学的在读研究生。

-
标题:Including Signed Languages in Natural Language Processing
-
作者:Kayo Yin、Amit Moryossef、Julie Hochgesang、Yoav Goldberg、Malihe Alikhani
-
机构:CMU、巴伊兰大学、加劳德特大学、艾伦人工智能研究所、匹兹堡大学
-
链接:https://arxiv.org/abs/2105.05222
论文摘要:手语是许多聋哑人和重听人交流的主要手段。由于手语表现了自然语言的所有基本语言特性,该研究认为自然语言处理的工具和理论对其建模至关重要。然而,现有的手语处理 (SLP) 研究很少尝试探索和利用手语的语言结构组织。该研究呼吁 NLP 社区将手语作为具有高度社会和科学影响的研究领域。该研究首先讨论了手语在建模过程中要考虑的语言属性;然后回顾了当前 SLP 模型的局限性,并确定了将 NLP 扩展到手语的开放挑战;最后,该研究建议以下几点 (1) 采用一种有效的 tokenization 方法 (2) 语言信息模型的发展 (3) 真实世界的手语数据的收集(4) 将当地手语社区纳入到积极而主导话语权研究方向中。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢